Физика волновых процессов и радиотехнические системы

УДК 691.396

Исследование алгоритмов фильтрации приема дискретных сообщений при использовании технологии MIMO в каналах с памятью

В.Г. Карташевский, О.С. Коняева

Поволжский государственный университет телекоммуникаций и информатики 443010, Российская Федерация, г. Самара ул. Л. Толстого, 23

В статье исследуются три различных алгоритма борьбы с межсимвольной интерференцией в MIMO-системах связи, с конфигурацией 2×2 (алгоритм сведения к нулю, алгоритм наименьших квадратов и алгоритм «приема» в целом «с поэлементным принятием решения»). Проведено математическое моделирование и дана сравнительная характеристика эффективности алгоритмов фильтрации.

Ключевые слова: МІМО, алгоритм наименьших квадратов, алгоритм сведения к нулю, алгоритм «приема» в целом «с поэлементным принятием решения», канал с межсимвольной интерференцией.

В связи с увеличением спроса на беспроводные системы передачи данных встает вопрос о технологиях, обеспечивающих высокую пропускную способность и надежность предоставляемых услуг связи. Наиболее перспективным путем решения поставленной проблемы является использование нескольких приемопередающих антенн, так называемых систем MIMO (Multiple Input Multiple Output - «многоканальный вход многоканальный выход»). Технология MIMO предполагает разбиение транслируемого потока данных, что приводит к увеличению скорости передачи, при этом не требуется расширения полосы рабочих частот. Для обеспечения декорреляции параллельных подпотоков в данных системах используется пространственное разнесение элементов передающей и приемной антенных решеток на расстояния порядка нескольких длин волн несущей частоты наряду с пространственным разнесением, в МІМОсистемах используется также поляризационное разнесение.

Рассмотрим систему MIMO с *N* передающими и *M* приемными антеннами (рис. 1) [1]. Единый поток данных поступает в MIMO передатчик, где проходит процесс обработки и распределения между *N* антеннами. Таким образом, MIMO канал **H** может быть разбит на *NM* параллельных подканалов. При мультиплексировании независимых данных получается *M*-кратное повышение скорости передачи по сравнению с системой связи, имеющей только одну антенну на приеме и передаче. Каждая из *M* антенн принимает сигналы, излучаемые из каждой передающей антенны. Приемник MIMO выполняет работу по разделению и обработке принимаемого потока сигналов для воспроизведения данных, которые были переданы.

Если канальная матрица **H** задана, то принимаемый сигнал в матричной форме записи представляется как:

$$\mathbf{r} = \mathbf{H}\mathbf{s} + \mathbf{n} \,, \tag{1}$$

где \mathbf{r} – принятый сигнальный вектор; \mathbf{s} – вектор переданных символов; \mathbf{H} – матрица коэффициентов передачи, описывающая канал между передающими антеннами N и приемными антеннами M; \mathbf{n} представляет собой вектор отсчетов гауссовского шума в канале. В общем случае задача приема состоит в том, чтобы компенсировать влияние канала на передаваемый сигнал. То есть необходимо найти матрицу \mathbf{W} такую, чтобы $\mathbf{H} \cdot \mathbf{W} = \mathbf{I}$, если N < M, или $\mathbf{W} \cdot \mathbf{H} = \mathbf{I}$, если $N \ge M$. Предполагая знание о канале \mathbf{H} на приемной стороне, матрица \mathbf{W} может быть найдена с помощью обратной матрицы Мура-Пентроуза:

$$\mathbf{W} = \begin{cases} \left(\mathbf{H}^{\mathbf{H}}\mathbf{H}\right)^{-1}\mathbf{H}^{\mathbf{H}}, & \text{если } N \ge M, \\ \\ \mathbf{H}^{\mathbf{H}}\left(\mathbf{H}\mathbf{H}^{\mathbf{H}}\right)^{-1}, & \text{если } N < M, \end{cases}$$

где $(\mathbf{H})^{\mathbf{H}}$ – знак эрмитово-сопряженной матрицы; $(\mathbf{H})^{-1}$ – знак обратной матрицы.

1. МІМО-канал

Рассмотрим систему MIMO в канале с памятью [2]. При передаче данных на высокой скорости, импульсный отклик канала может растянуться на множество интервалов передачи символов, что приводит к межсимвольной интерференции (МСИ).

Для системы MIMO все компоненты многолучевого распространения от *n*-й передающей антенны до *m*-й приемной антенны описываются при помощи импульсной характеристики (ИХ) $h_{nm}(l)$. Так как сигнал от всех *N* антенн передается на одной частоте, то *im*-я приемная антенна не может принять сигнал только от *in*-й передающей антенны, а принимает сигналы от всех *N* передающих антенн. Элементы ИХ формируют матрицу импульсных отсчетов **G**(*l*), имеющую размер $M \times N$. Элементы этой матрицы могут случайным образом изменяться с течением времени.

В общем случае сигнал на приемной стороне можно записать как [3]:

$$\mathbf{r}(k) = \sum_{l=0}^{L-1} \mathbf{G}(l) \mathbf{s}(k-l) + \mathbf{n}(k), \qquad (2)$$

где $\mathbf{r}(k)$ — это вектор принимаего сообщения в *М*-й приемной антенне в *k*-й дискретный отсчет времени; $\mathbf{s}(k)$ — это вектор передаваемого сообщения *N*-й передающей антенны в *k*-й дискретный отсчет времени; $\mathbf{n}(k)$ — вектор аддитивного белого гауссовского шума (БГШ) размерностью $M \times 1$; $\mathbf{G}(l)$ — матрица $M \times N$ МІМО-канала, состоящая из отсчетов *l* импульсных характеристик (ИХ) каналов; *L* — длина ИХ, интервал рассеяния (память канала). Формула (2) представляет собой формулу (1) через соотношение свертки. Тогда канальная матрица **H** в формуле (1) является блочной теплицевой матрицей вида [4]:

где **G**(*l*) – это матрица *M* × *N*, состоящая из *l* отсчетов импульсной характеристики канала между *n*-й передающей и *m*-й приемной антеннами:

Рис. 1. Блок-схема простой системы МІМО сN передающими и M приемными антеннами

Рис. 2. Система МІМО с конфигурацией 2×2

$$\mathbf{G}(l) = \begin{bmatrix} h_{11}(l) & \cdots & h_{n1}(l) \\ \vdots & \ddots & \vdots \\ h_{1m}(l) & \cdots & h_{nm}(l) \end{bmatrix}$$

Рассмотрим модель канала **МІМО с конфигу**рацией 2×2, то есть с 2 передающими и 2 приемными антеннами (рис. 2).

Поскольку имеется две передающие антенны, можно группировать передаваемые символы $\{s_1, s_2, s_3, s_4, ..., s_n\}$ по два. В первый интервал времени передаются s_1 и s_2 с помощью первой и второй антенн, во второй временной интервал аналогично передаются символы s_3 и s_4 и т. д. Таким образом, скорость передачи увеличивается в 2 раза.

На рис. 2 проиллюстрированы различные пути распространения сигнала h_{nm} . Для *l*-го отсчета импульсной характеристики матрица **G**(*l*) имеет вид:

$$\mathbf{G}(l) = \begin{bmatrix} h_{11}(l) & h_{21}(l) \\ h_{12}(l) & h_{22}(l) \end{bmatrix}.$$

Для моделируемой системы MIMO 2×2 принимаемый сигнал в первой и второй приемных антеннах соответственно равны:

$$\mathbf{r}_1 = \mathbf{h}_{11} \otimes \mathbf{s}_1 + \mathbf{h}_{21} \otimes \mathbf{s}_2 + \mathbf{n}_1 \,,$$

 $\mathbf{r}_2 = \mathbf{h}_{12} \otimes \mathbf{s}_1 + \mathbf{h}_{22} \otimes \mathbf{s}_2 + \mathbf{n}_2,$

где \mathbf{h}_{nm} — это ИХ канала между *n*-й передающей и *m*-й приемной антеннами; \mathbf{s}_1 и \mathbf{s}_2 являются передаваемыми символами из первой и второй передающих антенн; \mathbf{n}_1 и \mathbf{n}_2 — шум первой и второй приемной антенны, \otimes — символ свертки.

2. Эквалайзер

Для компенсации временного рассеяния на приемной стороне наибольшее распространение в настоящее время получили эквалайзеры, работа которых основана на использовании «алгоритма сведения к нулю» (Zero Forcing, ZF) [5] и «алгоритма наименьших квадратов» (Minimum Mean Square Error, MMSE) [5].

Рассмотрим систему МІМО, в которой работа эквалайзера будет основана на алгоритме сведения к нулю (Zero Forcing, ZF). Весовые коэффициенты эквалайзера регулируются таким образом, чтобы подавить межсимвольные искажения путем обращения их в нуль за счет нахождения обратной канальной матрицы **H**. Теоретически любой канал может быть компенсирован ZFэквалайзером при достаточно точном описании канала.

При этом необходимо найти матрицу **W** такую, чтобы $\mathbf{H} \cdot \mathbf{W} = \mathbf{I}$. Данное ограничение для линейного эквалайзера на основе алгоритма сведения к нулю будет иметь следующий вид:

 $\mathbf{W}_{ZF} = (\mathbf{H}^{\mathbf{H}}\mathbf{H})^{-1}\mathbf{H}^{\mathbf{H}}.$

Данный алгоритм является концептуально простым и легким в реализации, но не учитывающим шум приемника, что в итоге может привести к ухудшению помехоустойчивости приема.

Учет отношения сигнал/шум осуществляется в алгоритме наименьших квадратов, где происходит минимизация среднеквадратической ошибки между передаваемыми и входными символами (Minimum Mean Square Error, MMSE). Здесь необходимо найти такую матрицу \mathbf{W} , которая минимизировала бы среднеквадратическое значение ошибок, то есть $E \left\{ [\mathbf{Wr} - \mathbf{s}] [\mathbf{Wr} - \mathbf{s}]^{\mathbf{H}} \right\}$:

$$\mathbf{W}_{MMSE} = \left(\mathbf{H}^{\mathbf{H}}\mathbf{H} + \frac{N_0}{E_B}\mathbf{I}\right)^{-1}\mathbf{H}^{\mathbf{H}},$$

где E_B / N_0 – отношение сигнал/шум (ОСШ).

3. Алгоритм ПЦППР

Для обработки сигналов, прошедших канал с межсимвольной интерференцией (МСИ), в МІМО-системе, состоящей из *М* передатчиков и приемников, сформируем на приемной стороне фильтр на основе алгоритма «приема «в целом» с поэлементным принятием решения»(ПЦППР) [6].

Для системы MIMO 2×2 и детерминированного канала с МСИ и БГШ при использовании линейных видов модуляции (например, при двоичной фазовой манипуляции (ФМ-2)) алгоритм ПЦППР принимает вид:

$$\{\hat{s}_{n}, \hat{s}_{n+1}\} = \arg\min_{j} \left\{ \sum_{k=0}^{L} \left[\left(r_{1}'(k) - S_{on1j}(k) \right)^{2} + \left(r_{2}'(k) - S_{on2j}(k) \right)^{2} \right] \right\}, \quad j = \overline{1, d^{L}},$$

$$(3)$$

где $S_{on1j}(k)$ и $S_{on2j}(k)$ – опорные колебания вида:

$$S_{on1j}(k) = \sum_{l=0}^{L-1} (a_{1j}(l)\mathbf{h}_{11}(k-l) + a_{2j}(l)\mathbf{h}_{21}(k-l)),$$

$$S_{on2j}(k) = \sum_{l=0}^{L-1} (a_{1j}(l)\mathbf{h}_{12}(k-l) + a_{2j}(l)\mathbf{h}_{22}(k-l)), \quad (4)$$

$$j = \overline{1, 4^L},$$

а запись вида $\{\hat{s}_n, \hat{s}_{n+1}\}$ означает, что решение с помощью алгоритма ПЦППР будет приниматься одновременно о двух символах, принадлежащих двум разным источникам. В выражениях (3) и (4) введены следующие обозначения: $r'_1(k) = r_1(k) - g_{oc1}(k), r'_2(k) = r_2(k) - g_{oc2}(k)$ – это наблюдаемые на интервале анализа памяти канала ($T_a = L$) сигналы от первой и второй антенн соответственно «очищенные» от последействия предыдущих сигналов;

$$g_{oc1}(k) = \sum_{l=j-(L-1)}^{j-1} (\hat{\mathbf{s}}_1(l)\mathbf{h}_{11}(k-l) + \hat{\mathbf{s}}_2(l)\mathbf{h}_{21}(k-l)),$$

$$g_{oc2}(k) = \sum_{l=j-(L-1)}^{j-1} (\hat{\mathbf{s}}_1(l)\mathbf{h}_{12}(k-l) + \hat{\mathbf{s}}_2(l)\mathbf{h}_{22}(k-l))$$

– это сигналы, формируемые с помощью обратной связи по решению (ОСР), обусловленные цепочкой символов \hat{s}_1 и \hat{s}_2 , предшествующих анализируемому; $\{a_j\}$ – последовательность возможных решений на приеме относительно $\{s_n\}$; $a_{1j}(l)$ – нечетные члены последовательности a_j , соответствующие первой передающей антенне; $a_{2j}(l)$ – четные члены последовательности a_j , соответствующие второй передающей антенне.

Основу алгоритма ПЦППР составляют три положения [7-8]:

1. Решение о знаке информационных элементов $\{s_n, s_{n+1}\}$ выносится на основе анализа отрезка последовательности $\mathbf{r}(k)$, длительностью $N \cdot L$, который целиком содержит отклик канала на эти элементы от двух антенн.

2. Компенсация сигналов МСИ осуществляется на основе ОСР посредствам вычитания сигналов последействия от символов s_j , j < n, по которым уже принято решение.

Рис. 3. Общая блок-схема моделируемой МІМО-системы, с конфигурацией 2×2

3. На интервале анализа рассматривается d^L (d - объем алфавита источника) гипотез, множество которых разбивается на d частей, по числу гипотез относительно $\{s_n, s_{n+1}\}$. Сначала по критерию максимального правдоподобия выносится решение в пользу одной из d^L гипотез относительно комбинации $\{s_n, s_{n+1}, ..., s_{N(n+L-1)}\}$, а затем из максимально правдоподобной комбинации $\{\hat{s}_n, \hat{s}_{n+1}, ..., \hat{s}_{N(n+L-1)}\}$ удерживается Nпервых элементов \hat{s}_n .

4. Результаты моделирования

Общая схема моделируемой системы МІМО с конфигурацией 2×2 представлена на рис. 3.

Обе ветви на передаче генерируют независимые потоки данных, которые перемешиваются в канале MIMO, описанном выше. В приемнике потоки данных также обрабатываются отдельно, за исключением эквалайзера. Сигнал с передающей стороны (предполагается использование двоичной фазовой манипуляции, ФМ-2) проходит MIMO-канал, представляющий собой канал с памятью. В приемнике к каждому потоку сигналов добавляется независимая реализация аддитивного белого гауссовского шума (БГШ). После этого сигнал поступает в эквалайзер, где осуществляется компенсация межсимвольной интерференции с помощью алгоритмов ZF, MMSE и ПЦППР. Итогом обработки является процесс декодирования и подсчет вероятности битовых ошибок (BER) в зависимости от отношения сигнал/шум.

Моделирование работы схемы, представленной на рис. 3, осуществлялось исходя из следующих условий: 1) импульсная характеристика моделируемого канала h_{nm} постоянна и известна на приемной стороне; 2) длины всех ИХ каналов совпадают; 3) обработка 10^6 символов осуществлялась блоками по 50 символов.

На рис. 4 представлен график **BER в зависи**мости от ОСШ соответственно для алгоритмов ZF, **MMSE и ПЦППР при длине канальной па**мяти L = 6:

Рис. 4. ВЕ
Р МІМО-системы с конфигурацией 2×2 при длине памяти канал
аL=6

$h_{11} = [-0.9]$	0.7	-0.2	0.3	-0.1	0.2];
$h_{12} = [-0.3]$	0.5	0.8	0.4	0.1	-0.2];
$h_{21} = [0.6]$	-0.3	0.2	0.5	0.2	-0.1];
$h_{22} = [0.8]$	-0.6	0.3	-0.2	0.2	0.1].

Из результатов моделирования следует, что алгоритм эквалайзера ПЦППР обеспечивает меньшее значение вероятности ошибки, чем ZF и MMSE. Например, для вероятности ошибки 10⁻⁴ энергетический выигрыш алгоритма ПЦППР над MMSE составит примерно 2,4 дБ, а над ZF соответственно 2,7 дБ.

Список литературы

- Коняева О.С. Модель системы МІМО в релеевском канале // Радиотехнические и телекоммуникационные системы. 2013. № 3 (11). С. 64–70.
- Коняева О.С. Моделирование системы МІМО в канале с памятью // Инфокоммуникационные технологии. 2014. Т. 12. № 3. С. 32-36.
- Kung S.Y., Zhang X., Myer C.L. A recursive QR approach to adaptive equalization of time-varying MIMO channels // Communications in Information and Systems. 2005. Vol. 5. № 2. P. 169-196.
- Коняева О.С. Общее описание канала связи с межсимвольной интерференцией для систем МІМО // Материалы XXII Российской научной конференции профессорско-преподавательского состава, научных сотрудников и аспирантов. Самара: ПГУТИ, 2015. С. 74–75.
- Mehana A.H., Nosratinia A. Diversity of MMSE MIMO receivers // IEEE Transactions on Information Theory. 2012. Vol. 58. № 11. P. 6799-6805.
- Кловский Д.Д., Николаев Б.И., Карташевский В.Г. Способ демодуляции дискретных сигналов. Патент РФ № 832763. 1993. Опубл. в БИ № 19. 1981.

- Карташевский В.Г. Обработка пространственно-временных сигналов в каналах с памятью. М.: Радио и связь, 2000. 272 с.
- Карташевский В.Г, Мишин Д.В. Прием кодированных сигналов в каналах с памятью. М.: Радио и связь, 2004. 239 с.

Study of filtering algorithms receive digital messages using MIMO technology in channels with memory

V.G. Kartashevskii, O.S. Konyaeva

The article investigates the three different algorithms to combat intersymbol interference in a MIMO-communication systems with a 2×2 configuration (zero forcing algorithm, minimizing mean square error algorithm and the algorithm «technique as a whole with elementwise decision»). The mathematical modeling and the comparative characteristic of effective filtering algorithm.

Keywords: MIMO, zero forcing algorithm, minimizing mean square error algorithm, algorithm «technique as a whole with elementwise decision», bit error rate, memory channel, intersymbol interference.

Неганов, В.А.

Физическая регуляризация некорректных задач электродинамики: линии передачи, антенны, дифракция электромагнитных волн / В.А. Неганов. – М.: «САЙНС-ПРЕСС», 2008. – 432 с., 122 ил.

ISBN 978-5-88070-161-2

УДК 537.87 ББК 32.84 Н 41

Изложены основы физической регуляризации некорректных задач электродинамики, связанной с особенностями физических и математических моделей задач (физические допущения, некорректные математические выкладки, отсутствие предельного перехода). Подход, по мнению автора, обладает большими возможностями, чем метод регуляризации Тихонова А.Н. интегральных уравнений Фредгольма первого рода, названный в книге методом математической регуляризации. Метод физической регуляризации (МФР) применен к анализу

волноведущих и излучающих структур, а также задачам дифракции электромагнитных волн на некоторых телах. МФР позволил впервые корректно осуществить анализ полей в ближних зонах некоторых антенн, устранить несамосогласованное приближение Кирхгофа в задачах дифракции, установить связь поверхностной плотности тока проводимости с напряженностями электрического и магнитного полей для диполя Герца и т. п.

Для специалистов в области радиотехники и радиофизики СВЧ, электромагнитной совместимости РТС, математической теории дифракции и математического моделирования электродинамических структур самого широкого назначения. Может быть полезна преподавателям вузов, докторантам, аспирантам и студентам старших курсов соответствующих специальностей.