2018 г.

Физика волновых процессов и радиотехнические системы

УДК 535.317.1

Пространственная селективность четырехволнового преобразователя излучения в поглощающей двухкомпонентной среде при больших коэффициентах отражения

В.В. Ивахник, М.В. Савельев

Самарский национальный исследовательский университет им. акад. С.П. Королева 443086, Российская Федерация, г. Самара Московское шоссе, 34

Исследованы пространственные характеристики четырехволнового преобразователя излучения в поглощающей двухкомпонентной среде, состоящей из жидкости и растворенных в ней наночастиц, в приближении больших коэффициентов отражения. Показано, что наличие отрицательного знака коэффициента электрострикции приводит к возникновению в пространственном спектре объектной волны «провала», положение которого определяется параметрами двухкомпонентной среды. С увеличением интенсивности волн накачки наблюдается рост полуширины полосы вырезанных частот и ширины «провала», а также уменьшение полуширины полосы наиболее эффективно преобразуемых частот.

Ключевые слова: четырехволновой преобразователь излучения, пространственная селективность, поглощающая двухкомпонентная среда.

Введение

Одним из важных элементов, используемых в системах нелинейной адаптивной оптики, является многоволновой, в частности, четырехволновой преобразователь излучения, который осуществляет обращение волнового фронта падающей (сигнальной) волны и может быть реализован с использованием сред с различными механизмами нелинейности, ответственными за изменение в среде под действием излучения комплексной диэлектрической проницаемости [1-2].

Как правило, в средах одновременно реализуются два и более механизмов нелинейности. Так, в средах с резонансной нелинейностью на параметры четырехволнового преобразователя излучения может существенно влиять тепловой нагрев среды в результате поглощения лазерного излучения [3-7], в обратимой фотохромной среде на параметры четырехволнового преобразователя излучения влияет диффузия фотохромных частиц [8-9] и т. д. Учет нескольких механизмов нелинейности даже при малом коэффициенте отражения часто не приводит к аддитивному сложению амплитуд объектных волн, возникающих при четырехволновом взаимодействии на отдельных механизмах нелинейности [10]. Задача определения пространственных

характеристик четырехволнового преобразователя излучения при наличии нескольких механизмов нелинейности существенно усложняется при больших коэффициентах отражения, когда амплитуда объектной волны сравнима или превышает амплитуду сигнальной волны [11–13].

В работах [14-16] в приближениях как малых, так и больших коэффициентов отражения (преобразования) рассмотрены пространственные характеристики четырехволнового преобразователя излучения в прозрачных двухкомпонентных средах с учетом направлений распространения, расходимости волн накачки. Однако в реальных многокомпонентных средах всегда присутствует поглощение на частотах взаимодействующих волн. В поглощающих двухкомпонентных средах, наряду с электрострикционным механизмом нелинейности, эффектами Дюфура, Соре реализуется тепловой механизм нелинейности, увеличивается число динамических решеток, формирующих волну с обращенным волновым фронтом.

Целью настоящей работы является исследование пространственной селективности четырехволнового преобразователя излучения в поглощающей двухкомпонентной среде с учетом больших коэффициентов отражения.

1. Модель четырехволнового взаимодействия

Рассмотрим плоский слой поглощающей двухкомпонентной среды, заключенной между плоскостями z = 0 и $z = \ell$ (рис. 1) и состоящей из жидкости и растворенных в ней микро- или наночастиц (суспензии, эмульсии, коллоидные растворы и т. д.). В среде распространяются навстречу друг другу две плоские волны накачки с комплексными амплитудами $A_{1,2}(\vec{r}) =$ $= \tilde{A}_{1,2}(z) \exp\left(-i k_{1,2} \vec{r}\right)$ ($k_{1,2}$ – волновые вектора волн накачки, $\vec{r} \{ \vec{\rho}(x, y), z \}$ – радиус-вектор) и сигнальная волна с комплексной амплитудой A_3 . Зависимость интенсивности излучения, распространяющегося в среде, от пространственных координат приводит, вследствие явления электрострикции и термодиффузионного эффекта Соре, к пространственному изменению концентрации частиц δС, а учет поглощения излучения и эффекта Дюфура - к пространственному изменению температуры среды бТ. В результате записывается решетка показателя преломления.

Вследствие вырожденного четырехволнового взаимодействия в нелинейной среде генерируется объектная волна с комплексной амплитудой A_4 , распространяющаяся навстречу сигнальной волне.

Уравнение Гельмгольца, описывающее вырожденное четырехволновое взаимодействие в поглощающей нелинейной среде, имеет вид [2; 10]

$$\left(\nabla^2 + k^2 + \frac{2k^2}{n_0}\frac{dn}{dT}\delta T - 2ik\alpha\right)\left(A + A^*\right) = 0.$$
(1)

Здесь

$$A = \sum_{j=1}^{4} A_j; \ k = \omega n_0 c^{-1};$$

 ω – циклическая частота; n_0 – среднее значение показателя преломления среды; c – скорость света в вакууме; $\frac{dn}{dT}$ – термооптический

Рис. 1. Схема четырехволнового взаимодействия со встречными волнами накачки

коэффициент; α – амплитудный коэффициент поглощения среды.

Уравнение Гельмгольца записано при условии, что вкладом изменения концентрации частиц в изменение комплексного показателя преломления можно пренебречь. Для типичных двухкомпонентных сред, используемых в работах по исследованию четырехволнового взаимодействия, это условие реализуется при концентрациях частиц менее 10¹² см⁻³ [17–19].

Дополним уравнение (1) стационарным материальным уравнением, описывающим изменение температуры [20]

$$D_1 \nabla^2 \delta T = -2\alpha I + \frac{\gamma D_{12}}{D_{22}} \nabla^2 I.$$
⁽²⁾

Здесь $D_1 = D_{11} - D_{12}D_{21}D_{22}^{-1}$; D_{11} и D_{22} – коэффициенты теплопроводности и диффузии; D_{12} , D_{21} и γ – коэффициенты, характеризующие эффекты Дюфура, Соре и явление электрострикции соответственно; $I = AA^*$ – интенсивность излучения.

2. Четырехволновое взаимодействие с учетом температурной решетки, возникающей при интерференции первой волны накачки и сигнальной волны

Рассмотрим четырехволновое взаимодействие в приближении заданного поля по волнам накачки ($|A_{1,2}| >> |A_{3,4}|$) и малого коэффициента отражения ($|A_4| << |A_3|$). Тогда выражение для интенсивности излучения, распространяющегося в нелинейной среде, включает в себя сумму интенсивностей волн накачки ($I_{1,2} = A_{1,2}A_{1,2}^*$) и слагаемые, отвечающие за интерференцию первой волны накачки и сигнальной волны

$$I = I_1 + I_2 + A_1 A_3^* + A_1^* A_3.$$
(3)

Представим изменение температуры в виде суммы быстро $(\delta T_{31}(\vec{\rho}, z))$ и медленно $(\delta T_0(z))$ меняющихся в зависимости от поперечных координат составляющих. Сигнальную и объектную волны разложим по плоским волнам, быстро меняющуюся составляющую температуры – по гармоническим решеткам.

В приближении медленно меняющихся амплитуд при квазиколлинеарной геометрии взаимодействия волн с учетом граничного условия $A_4(\vec{\rho}, z = \ell) = 0$ пространственный спектр объектной волны $\tilde{A}_4(\vec{\kappa}_4, z)$ на передней грани нелинейного слоя связан с пространственным спектром температурной решетки $\delta \tilde{T}_{31}(\vec{\kappa}_{T1},z)$ следу-ющим образом [16]

$$\tilde{A}'_{4}\left(\vec{\kappa}_{4}, z=0\right) = -i\frac{k}{n_{0}}\frac{dn}{dT}\tilde{A}_{20} \times \\ \times \int_{0}^{\ell} \delta\tilde{T}_{31}\left(\vec{\kappa}_{T1}, z\right) \exp\left[-i\left(k_{2z} - k_{4z}\right)z\right]dz.$$

$$\tag{4}$$

Здесь

$$\begin{split} \tilde{A}_{4}^{\prime}\left(\vec{\kappa}_{4},z\right) &= \tilde{A}_{4}\left(\vec{\kappa}_{4},z\right) \exp\left[P\left(\ell\right) - P\left(z\right)\right];\\ P\left(z\right) &= \alpha z + i \frac{k}{n_{0}} \frac{dn}{dT} \int_{0}^{z} \delta T_{0}\left(z_{1}\right) dz_{1}; \end{split}$$

 $\tilde{A}_{20} = \tilde{A}_2 (z = \ell); \quad \vec{\kappa}_{T1} = \vec{\kappa}_1 - \vec{\kappa}_3; \quad \vec{\kappa}_4 = \vec{\kappa}_{T1} + \vec{\kappa}_2;$ $\vec{\kappa}_j$ – поперечная составляющая волнового вектора $\vec{k}_j; \vec{\kappa}_{T1}$ – волновой вектор температурной решетки; k_{2z} и k_{4z} – продольные составляющие волновых векторов второй волны накачки и объектной волны; $j = 1 \div 4$.

Для нахождения пространственного спектра температурной решетки воспользуемся вытекающим из (2) уравнением, связывающим $\delta \tilde{T}_{31}(\vec{\kappa}_{T1},z)$ и пространственный спектр сигнальной волны на передней грани нелинейного слоя $\tilde{A}_3(\vec{\kappa}_3, z=0)$, вида [20]

$$\left(\frac{d^{2}}{dz^{2}} - \kappa_{T1}^{2}\right) \delta \tilde{T}_{31} \left(\vec{\kappa}_{T1}, z\right) + \\ + \frac{\beta_{1}}{D_{1}} \tilde{A}_{10} \tilde{A}_{30}^{*} \left(\vec{\kappa}_{3}\right) \exp\left(-\psi_{1} z\right) = 0,$$
(5)

где

$$\begin{split} \kappa_{T1} &= \left| \vec{\kappa}_{T1} \right|; \quad \tilde{A}_{10} = \tilde{A}_1 \left(z = 0 \right); \\ \tilde{A}_{30} \left(\vec{\kappa}_3 \right) &= \tilde{A}_3 \left(\vec{\kappa}_3, z = 0 \right); \\ \beta_1 &= 2\alpha - \frac{\gamma D_{12}}{D_{22}} \left(\psi_1^2 - \kappa_{T1}^2 \right); \\ \psi_1 &= 2\alpha + i \left(k_{1z} - k_{3z} \right); \end{split}$$

 k_{1z} и k_{3z} – продольные составляющие волновых векторов первой волны накачки и сигнальной волны.

Решение уравнения (5) с учетом неизменности температуры на гранях нелинейного слоя $\left(\delta \tilde{T}_{31}\left(\vec{\kappa}_{T1}, z=0\right) = \delta \tilde{T}_{31}\left(\vec{\kappa}_{T1}, z=\ell\right)\right)$ имеет вид

$$\begin{split} \delta T_{31}\left(\vec{\kappa}_{T1},z\right) &= \\ &= \frac{\beta_1}{D_1\left(\psi_1^2 - \kappa_{T1}^2\right)} \tilde{A}_{10} \tilde{A}_{30}^*\left(\vec{\kappa}_3\right) \left[\frac{1}{\operatorname{sh}\left(\kappa_{T1}\ell\right)} \times \left\{\exp\left(-\psi_1\ell\right) \operatorname{sh}\left(\kappa_{T1}z\right) - \operatorname{sh}\left[\kappa_{T1}\left(z-\ell\right)\right]\right\} - \\ &- \exp\left(-\psi_1z\right)\right]. \end{split}$$
(6)

Подставив выражение для пространственного спектра температурной решетки (6) в (4) и проинтегрировав по координате *z*, получим пространственный спектр объектной волны на передней грани нелинейного слоя

$$\begin{split} \tilde{A}'_{4}\left(\vec{\kappa}_{4}, z=0\right) &= \\ &= -i\frac{k\beta_{1}}{n_{0}D_{1}\left(\psi_{1}^{2}-\kappa_{T1}^{2}\right)}\frac{dn}{dT}\tilde{A}_{10}\tilde{A}_{20}\tilde{A}^{*}_{30}\left(\vec{\kappa}_{3}\right)\times \\ &\times \left(\frac{1}{2\operatorname{sh}\left(\kappa_{T1}\ell\right)}\left\{\left[\exp\left(-\psi_{1}\ell\right)-\exp\left(-\kappa_{T1}\ell\right)\right]\times\right. \\ &\times \frac{\exp\left\{\left[\kappa_{T1}-i\left(k_{2z}-k_{4z}\right)\right]\ell\right\}-1}{\kappa_{T1}-i\left(k_{2z}-k_{4z}\right)}+ \\ &+ \left[\exp\left(-\psi_{1}\ell\right)-\exp\left(\kappa_{T1}\ell\right)\right]\times \\ &\times \frac{\exp\left\{-\left[\kappa_{T1}+i\left(k_{2z}-k_{4z}\right)\right]\ell\right\}-1}{\kappa_{T1}+i\left(k_{2z}-k_{4z}\right)}\right\}+ \\ &+ \frac{\exp\left[-\left(\alpha+i\Delta\right)\ell\right]-1}{\alpha+i\Delta}\right). \end{split}$$
(7)

Здесь $\Delta = k_{1z} + k_{2z} - k_{3z} - k_{4z}$ – проекция волновой расстройки на ось Z.

Введем коэффициенты отражения на высоких (R_1) и низких (R_2) пространственных частотах

$$R_{1} = \left| \frac{\tilde{A}'_{4} \left(\left| \vec{\kappa}_{4} \right| \to 0.1 k, z = 0 \right) \right|}{\tilde{A}^{*}_{30}} \right|,$$

$$R_{2} = \left| \frac{\tilde{A}'_{4} \left(\left| \vec{\kappa}_{4} \right| \to 0, z = 0 \right) \right|}{\tilde{A}^{*}_{30}} \right|.$$
(8)

Из (7) следует, что

$$R_1 = \left| G \frac{\gamma D_{12}}{D_{22}} \frac{\exp\left(-2\alpha\ell\right) - 1}{2\alpha\ell} \right|,\tag{9}$$

$$R_{2} = \left| G \frac{\gamma D_{12}}{D_{22}} \left(\frac{D_{22}}{2\alpha\gamma D_{12}} - 1 \right) \times \left\{ \frac{1}{2} \left[1 + \exp\left(-2\alpha\ell\right) \right] + \frac{\exp\left(-2\alpha\ell\right) - 1}{2\alpha\ell} \right\} \right|.$$

$$(10)$$

Здесь $G^2 = G_1G_2, G_{1,2} = \frac{k\ell}{n_0D_1}\frac{dn}{dT}I_{1,2}.$

При $\alpha \to 0$ коэффициент отражения R_1 полностью определяет эффективность четырехволнового преобразователя излучения в прозрачной двухкомпонентной среде [15]. Коэффициент отражения R_2 при $\gamma \to 0$ определяет эффективность четырехволнового преобразователя на тепловой нелинейности [11].

Из выражения (10) следует, что коэффициент отражения на низких пространственных частотах R_2 равен нулю: 1) для прозрачной нелинейной среды; 2) для поглощающей среды при выполнении условия $\gamma = D_{22}/(2\alpha D_{12})$.

Puc. 2. Пространственные спектры объектной волны при $k\ell = 5 \cdot 10^3$, G = 1, $\gamma D_{12}/(D_{22}\ell) = 10^{-2}$ (a), -10^{-2} (б), $\alpha \ell = 2 \cdot 10^{-1}$ (1), 10^{-1} (2), $5 \cdot 10^{-2}$ (3), $2 \cdot 10^{-2}$ (4), 10^{-2} (5)

В случае слабопоглощающей среды (α*l* << 1) отношение коэффициентов отражения на низких и высоких пространственных частотах прямо пропорционально отношению коэффициентов поглощения и электрострикции

$$\frac{R_2}{R_1} = \frac{D_{22}\ell^2\alpha}{6D_{12}|\gamma|}.$$
(11)

Выражение (11) позволяет оценить, при каких толщинах нелинейного слоя, параметрах нелинейной среды пространственный спектр объектной волны обусловлен как тепловой нелинейностью, так и электрострикцией, эффектами Дюфура и Соре

$$0.2 < rac{D_{22}\ell^2 lpha}{6 D_{12} \left| \gamma
ight|} < 5$$
 .

На рис. 2 для волн накачки, распространяющихся строго вдоль оси Z ($k_{1z} = -k_{2z} = k$), для сигнальной волны от точечного источника (\tilde{A}_{30} ($\vec{\kappa}_3$) = 1) представлены характерные графики амплитуд пространственных спектров объектной волны при различных значениях коэффициента поглощения. Как при положительных (рис. 2, *a*), так и при отрицательных значениях коэффициента электрострикции (рис. 2, *б*) амплитуды пространственных спектров с ростом пространственной частоты ($\kappa = |\vec{\kappa}_4|$) выходят на постоянное значение, определяемое выражением (9).

При положительном значении коэффициента электрострикции выход на постоянное значение амплитуды пространственного спектра объектной волны происходит либо при ее монотонном убывании с отклонением не более 5%, либо при ее монотонном возрастании (рис. 2, *a*).

При отрицательном значении коэффициента электрострикции (рис. 2, б) в пространственном спектре объектной волны наблюдается «провал» на пространственной частоте κ_0 , значение которой меняется пропорционально

$$\sqrt{2D_{22}lpha}/\left(D_{12}k^2\left|\gamma\right|\right)$$

Для характеристики пространственной селективности четырехволнового преобразователя излучения в поглощающей двухкомпонентной среде с отрицательным коэффициентом электрострикции введем три параметра: полуширину полосы пространственных частот, вырезаемых четырехволновым преобразователем излучения ($\Delta \kappa = \kappa_1$); полуширину полосы пространственных частот, эффективно преобразуемых в области низких пространственных частот ($\Delta \kappa_1$); ширину «провала»($\Delta \kappa_2 = \kappa_1 - \kappa_2$), определяемые из уравнений

$$\left|\tilde{A}_{4}'(\kappa_{1,2}, z=0)\right| = \frac{1}{2} \left|\tilde{A}_{4}'(\kappa \to 0.1k, z=0)\right|,$$
 (12)

$$\left|\tilde{A}_{4}'\left(\Delta\kappa_{1},z=0\right)\right|=\frac{1}{2}\left|\tilde{A}_{4}'\left(\kappa\to0,z=0\right)\right|.$$
(13)

Здесь $\kappa_1 > \kappa_2$.

При условии $R_1/R_2 > 1$ пространственная селективность четырехволнового преобразователя излучения характеризуется параметром $\Delta \kappa$, а при условии $R_1/R_2 < 1$ – параметрами $\Delta \kappa_1$ и $\Delta \kappa_2$.

На рис. З приведены характерные графики зависимости $\Delta \kappa$, $\Delta \kappa_1$ и $\Delta \kappa_2$ от коэффициента поглощения при фиксированном значении у. Указанные зависимости приведены для $\Delta \kappa$ в диапазоне $\alpha < 6D_{12} |\gamma| / (D_{22}\ell^2)$, для $\Delta \kappa_1$ и $\Delta \kappa_2 - \alpha \ge 6D_{12} |\gamma| / (D_{22}\ell^2)$. Значение $\alpha = 6D_{12} |\gamma| / (D_{22}\ell^2)$ соответствует равенству коэффициентов отражения на высоких и низких пространственных частотах.

С ростом α наблюдается монотонное увеличение всех трех величин. Характер указанных

Рис. 3. Зависимости полуширин полос вырезанных (1), эффективно преобразуемых пространственных частот (2), ширины «провала» (3) от коэффициента поглощения при $k\ell = 5 \cdot 10^3$, $\gamma D_{12}/(D_{22}\ell) = -10^{-2}$

зависимостей в области значений $\alpha \ell < 3 \cdot 10^{-1}$ хорошо аппроксимируется следующими выражениями

$$\begin{aligned} \frac{\Delta\kappa}{k} &= B_{\sqrt{\frac{3D_{12}|\gamma|}{D_{22}\ell} + \alpha\ell}},\\ \frac{\Delta\kappa_1}{k} &= B_1 \ln^2 \left(B_2 \alpha\ell + 1 \right),\\ \frac{\Delta\kappa_2}{k} &= B_3 + B_4 \alpha\ell, \end{aligned}$$
(14)

где B, B₁, B₂, B₃, B₄ – константы, равные при $k\ell = 5 \cdot 10^3$, $\gamma D_{12}/(D_{22}\ell) = -10^{-2}$ соответственно $B \approx 4.32 \cdot 10^{-3}$, B₁ $\approx 9 \cdot 10^{-6}$, B₂ $\approx 10^4$, B₃ $\approx 8.2 \cdot 10^{-4}$, B₄ $\approx 1.55 \cdot 10^{-3}$.

3. Четырехволновое взаимодействие с учетом температурных решеток, возникающих при интерференции волн накачки с сигнальной и объектной волнами, самодифракции волн накачки

Рассмотрим четырехволновое взаимодействие при интенсивностях объектной волны сравнимых или даже превышающих интенсивность сигнальной волны (реализуется случай больших коэффициентов отражения). Тогда, наряду с температурной решеткой, возникающей при интерференции первой волны накачки и сигнальной волны, необходимо учитывать температурную решетку, возникающую при интерференции второй волны накачки и объектной волны. Существенное влияние на четырехволновое взаимодействие начинает оказывать самодифракция волн накачки. В выражение для интенсивности распространяющегося в нелинейной среде излучения (6) добавляются слагаемые $A_2A_4^* + A_2^*A_4$, а в изменение температуры – еще одна быстро меняющаяся от поперечных координат составляющая $\delta T_{42}(\vec{\rho}, z)$, которая так же раскладывается по гармоническим решеткам.

При квазиколлинерном распространении взаимодействующих волн уравнения, описывающие изменения пространственных спектров сигнальной и объектной волн, имеют вид [11]

$$\frac{dA'_{3}}{dz} + i\frac{k}{n_{0}}\frac{dn}{dT}\left(\delta\tilde{T}^{*}_{31} + \delta\tilde{T}_{42}\right)\tilde{A}_{10} \times \\
\times \exp\left[-i\left(k_{1z} - k_{3z}\right)z\right] = 0, \\
\frac{d\tilde{A}'_{4}}{dz} - i\frac{k}{n_{0}}\frac{dn}{dT}\left(\delta\tilde{T}_{31} + \delta\tilde{T}^{*}_{42}\right)\tilde{A}_{20} \times \\
\times \exp\left[-i\left(k_{2z} - k_{4z}\right)z\right] = 0.$$
(15)

Здесь $\tilde{A}'_{3}(\vec{\kappa}_{3},z) = \tilde{A}_{3}(\vec{\kappa}_{3},z) \exp[P(z)], \delta \tilde{T}_{42}(\vec{\kappa}_{T2},z)$ и $\vec{\kappa}_{T2}$ – пространственный спектр и волновой вектор решетки, возникающей при интерференции второй волны накачки и объектной волны.

Учет самодифракции волн накачки приводит к появлению в системе уравнений (15) слагаемых, прямо пропорциональных $\delta \tilde{T}_{31}^* \tilde{A}_1$ и $\delta \tilde{T}_{42}^* \tilde{A}_2$. Слага-емые, пропорциональные $\delta \tilde{T}_{42} \tilde{A}_1$ и $\delta \tilde{T}_{31} \tilde{A}_2$ учитывают перекачку энергии из сигнальной волны в объектную, и наоборот.

Используя материальное уравнение (2), получим систему уравнений для пространственных спектров температурных решеток

$$\begin{split} &\left(\frac{d^{2}}{dz^{2}}-\kappa_{T1}^{2}\right)\delta\tilde{T}_{31}\left(\vec{\kappa}_{T1},z\right)=-\frac{\tilde{A}_{10}}{D_{1}}\exp\left(-\psi_{1}z\right)\times\\ &\times\left(2\psi_{1}\frac{\gamma D_{12}}{D_{22}}\frac{d}{dz}+\beta_{1}\right)\tilde{A}_{3}^{\prime*}\left(\vec{\kappa}_{3},z\right),\\ &\left(\frac{d^{2}}{dz^{2}}-\kappa_{T2}^{2}\right)\delta\tilde{T}_{42}\left(\vec{\kappa}_{T2},z\right)=-\frac{\tilde{A}_{20}}{D_{1}}\exp\left(-\psi_{2}z\right)\times\\ &\times\left(2\psi_{2}\frac{\gamma D_{12}}{D_{22}}\frac{d}{dz}+\beta_{2}\right)\tilde{A}_{4}^{\prime*}\left(\vec{\kappa}_{4},z\right). \end{split}$$
(16)

Здесь

$$\beta_2 = 2\alpha - \frac{\gamma D_{12}}{D_{22}} (\psi_2^2 - \kappa_{T2}^2),$$

 $\psi_2 = 2\alpha + i(k_{2z} - k_{4z}), \quad \kappa_{T2} = |\vec{\kappa}_{T2}| = \kappa_{T1}.$

Продифференцировав систему уравнений (15) дважды по координате *z* и учитывая (16), получим систему дифференциальных уравнений третьего порядка, связывающую пространственные спектры сигнальной и объектной волн

Рис. 4. Зависимости коэффициентов отражения на высоких (1), (3) и низких (2) пространственных частотах от интенсивности волн накачки при $k\ell = 5 \cdot 10^3$, $\gamma D_{12}/(D_{22}\ell) = -10^{-2}$: a) $\alpha \ell = 10^{-2}$; б) $\alpha \ell = 10^{-1}$ (1, 2), 0 (3)

$$\begin{aligned} \frac{d^{3}\tilde{A}_{3}'}{dz^{3}} + 2i\left(k_{1z} - k_{3z}\right)\frac{d^{2}\tilde{A}_{3}'}{dz^{2}} - \left\{2iG_{1}\frac{\gamma D_{12}}{D_{22}\ell}\psi_{1}^{*}\times\right.\\ &\times \exp\left(-2\alpha z\right) + \left[\kappa_{T1}^{2} + \left(k_{1z} - k_{3z}\right)^{2}\right]\right\}\frac{d\tilde{A}_{3}'}{dz} - \\ &- iG_{1}\frac{\beta_{1}^{*}}{\ell}\exp\left(-2\alpha z\right)\tilde{A}_{3}' = 2iG\frac{\gamma D_{12}}{D_{22}\ell}\psi_{2}\times\\ &\times \exp\left[2\alpha\left(z - \ell\right) - i\Delta z\right]\frac{d\tilde{A}_{4}'^{*}}{dz} + \\ &+ iG\frac{\beta_{2}}{\ell}\exp\left[2\alpha\left(z - \ell\right) - i\Delta z\right]\frac{d\tilde{A}_{4}'^{*}}{dz^{2}} + \left\{2iG_{2}\frac{\gamma D_{12}}{D_{22}\ell}\psi_{2}^{*}\times\right. \end{aligned}$$
(17)
$$&\times \exp\left[2\alpha\left(z - \ell\right)\right] - \left[\kappa_{T2}^{2} + \left(k_{2z} - k_{4z}\right)^{2}\right]\right\}\frac{d\tilde{A}_{4}'}{dz} + \\ &+ iG_{2}\frac{\beta_{2}^{*}}{\ell}\exp\left[2\alpha\left(z - \ell\right)\right] - \left[\kappa_{T2}^{2} + \left(k_{2z} - k_{4z}\right)^{2}\right]\right]\frac{d\tilde{A}_{4}'}{dz} + \\ &+ iG_{2}\frac{\beta_{2}^{*}}{\ell}\exp\left[2\alpha\left(z - \ell\right)\right]\tilde{A}_{4}' = \\ &= -2iG\frac{\gamma D_{12}}{D_{22}\ell}\psi_{1}\exp\left[-\left(2\alpha + i\Delta\right)z\right]\frac{d\tilde{A}_{3}'^{*}}{dz} - \\ &- iG\frac{\beta_{1}}{\ell}\exp\left[-\left(2\alpha + i\Delta\right)z\right]\tilde{A}_{3}'^{*}. \end{aligned}$$

В предельных случаях при $\alpha \rightarrow 0$ и $\gamma \rightarrow 0$ система уравнений (17) совпадает с аналогичными системами уравнений, связывающими пространственные спектры сигнальной и объектной волн при вырожденном четырехволновом взаимодействии в прозрачной двухкомпонентной среде [15] и в среде с тепловой нелинейностью [11] соответственно.

Численное решение системы уравнений (17) с учетом граничных условий на амплитуды пространственных спектров сигнальной и объектной волн и их производные на гранях нелинейного слоя

$$\left. \frac{d\tilde{A}'_{3,4}}{dz} \right|_{z=0} = \frac{d\tilde{A}'_{3,4}}{dz} \bigg|_{z=\ell} = 0, \qquad (18)$$

вытекающие из неизменности температуры на гранях, позволяет проанализировать пространственную селективность вырожденного четырехволнового преобразователя излучения в поглощающей двухкомпонентной среде с учетом самодифракции волн накачки, перекачки энергии из сигнальной волны в объектную, и наоборот.

С ростом интенсивности волн накачки ($I_1 = I_2$) наблюдается монотонное увеличение коэффициентов отражения на высоких и низких пространственных частотах объектной волны (рис. 4). При условии $D_{22}\ell^2\alpha/(6D_{12}|\gamma|) < 1$ скорость изменения коэффициента отражения на высоких пространственных частотах $\left(\frac{dR_2}{dI}\right)$ меньше скорости изменения коэффициента отражения на высоких пространственных частотах $\left(\frac{dR_1}{dI}\right)$ (рис. 4, *a*), в то время как при $D_{22}\ell^2\alpha/(6D_{12}|\gamma|) > 1$ наблюдается обратная ситуация (рис. 4, *б*). Таким образом, с ростом интенсивности волн накачки разность коэффициентов отражения R_1 и R_2 увеличивается.

Учет поглощения излучения двухкомпонентной средой приводит к уменьшению скорости роста коэффициента отражения на высоких пространственных частотах (рис. 4, б, кривые 1 и 3), при этом скорость роста коэффициента отражения на низких пространственных частотах меняется незначительно (рис. 4, б, кривая 2).

Puc. 5. Зависимости полуширин полос вырезанных (*a*), эффективно преобразуемых пространственных частот (б, кривые 1, 2), ширины «провала» (б, кривая 3) от интенсивности волн накачки при $k\ell = 5 \cdot 10^3$: *a*) $\alpha \ell = 10^{-2}$ (1), 0 (2), $\gamma D_{12}/(D_{22}\ell) = -10^{-2}$; 6) $\alpha \ell = 10^{-1}$, $\gamma D_{12}/(D_{22}\ell) = -10^{-2}$ (1, 3), 0 (2)

При $\alpha \ell = 10^{-1}$ относительная разность скоростей роста $\frac{dR_2}{dI}$ для четырехволновых преобразователей излучения в поглощающей двухкомпонентной среде и в среде с тепловой нелинейностью в диапазоне нормированных интенсивностей волн накачки *G* от 5 до 80 не превышает 10 %.

При отрицательных значениях коэффициента электрострикции увеличение интенсивности волн накачки не приводит к смещению положения «провала» к₀ в пространственном спектре объектной волны.

На рис. 5 приведены характерные зависимости полуширин полос пространственных частот, вырезанных четырехволновым преобразователем излучения, эффективно преобразуемых в области низких пространственных частот, ширины «провала» от интенсивности волн накачки.

Рост интенсивности волн накачки приводит к монотонному увеличению полуширины полосы вырезанных частот $\Delta \kappa$ (рис. 5, *a*) и ширины «провала» $\Delta \kappa_2$ (рис. 5, *б*, кривая 3) и уменьшению полуширины полосы наиболее эффективно преобразуемых частот $\Delta \kappa_1$ (рис. 5, *б*, кривые 1 и 2). Для случая четырехволнового преобразователя излучения в прозрачной двухкомпонентной среде ($\alpha \rightarrow 0$) зависимость полуширины полосы $\Delta \kappa$ от интенсивности волн накачки лежит ниже соответствующей зависимости для случая четырехволнового преобразователя в поглощающей двухкомпонентной среде.

По сравнению с четырехволновым преобразователем излучения в среде с тепловой нелинейностью ($\gamma = 0$) у четырехволнового преобразователя в поглощающей двухкомпонентной среде скорость убывания полуширины полосы эффективно преобразуемых пространственных частот Δκ₁ с увеличением интенсивности волн накачки оказывается меньше.

Приведем некоторые оценки. Для четырехволновых преобразователей излучения в поглощающей двухкомпонентной среде ($\gamma D_{12}/(D_{22}\ell) =$ $= -10^{-2}$) и в среде с тепловой нелинейностью при $k\ell = 5 \cdot 10^3$, $\alpha \ell = 10^{-1}$ изменение на порядок интенсивности волн накачки (от G = 8 до G = 80) увеличивает коэффициент отражения на низких пространственных частотах в 68.2 и 61 раз соответственно. При этом полуширина полосы эффективно преобразуемых пространственных частот уменьшается соответственно в 2.1 (от $\Delta \kappa_1 \approx 4.4 \cdot 10^{-4} k$ до $\Delta \kappa_1 \approx 2.1 \cdot 10^{-4} k$) и 2.5 раза (от $\Delta \kappa_1 \approx 6.3 \cdot 10^{-4} k$ до $\Delta \kappa_1 \approx 2.5 \cdot 10^{-4} k$).

Для четырехволновых преобразователей излучения в поглощающей ($\alpha \ell = 10^{-2}$) и прозрачной двухкомпонентных средах при $k\ell = 5 \cdot 10^3$, $\gamma D_{12}/(D_{22}\ell) = -10^{-2}$ изменение интенсивности волн накачки в тех же пределах увеличивает коэффициент отражения на высоких пространственных частотах в 18.2 и 18.6 раз соответственно. При этом полуширина полосы вырезанных пространственных частот увеличивается соответственно в 1.4 (от $\Delta \kappa \approx 8 \cdot 10^{-4} k$ до $\Delta \kappa \approx 1.1 \cdot 10^{-3} k$) и 1.5 раза (от $\Delta \kappa \approx 6.8 \cdot 10^{-4} k$ до $\Delta \kappa \approx 10^{-3} k$).

Заключение

Для вырожденного четырехволнового преобразователя излучения в поглощающей двухкомпонентной среде в приближении малых коэффициентов отражения получено аналитическое выражение, устанавливающее связь между пространственными спектрами сигнальной и объектной волн. Показано, что знак коэффициента электрострикции определяет общий вид пространственного спектра объектной волны.

В случае отрицательного значения коэффициента электрострикции существует пространственная частота, на которой амплитуда пространственного спектра объектной волны равна нулю. Увеличение коэффициента поглощения приводит к росту полуширин полос вырезанных, эффективно преобразуемых пространственных частот, ширины «провала».

Соотношение между скоростями изменения коэффициентов отражения на высоких и низких пространственных частотах определяется величиной параметра $D_{22}\ell^2\alpha/(6D_{12}|\gamma|)$. С ростом интенсивности волн накачки увеличиваются не только коэффициенты отражения R_1 и R_2 , но и их разность.

Полуширина полосы вырезанных пространственных частот и ширина «провала» с увеличением интенсивности волн накачки возрастают, а полуширина полосы эффективно преобразуемых пространственных частот уменьшается.

Список литературы

- Дмитриев В.Г. Нелинейная оптика и обращение волнового фронта. М.: Физматлит, 2003. 256 с.
- Ивахник В.В. Обращение волнового фронта при четырехволновом взаимодействии. Самара: Самарский университет, 2010. 246 с.
- Туморин В.В., Ильичев Н.Н. О роли тепловой нелинейности при вырожденных взаимодействиях в насыщенных лазерных средах // Квантовая электроника. 2007. Т. 37. № 9. С. 821-826.
- Majles Ara M.H., Mehrabani S, Malekfar R. Phase conjugation using four-wave mixing in fast green FCF dyedoped gelatin film // Advances in Nonlinear Optics. 2009. Vol. 2009. P. 371974.
- Nonlinear formation of dynamic holograms and multiwave mixing in resonant medium / A.S. Rubanov [et al.] // Optics Communications. 2000. Vol. 181. P. 183-190.
- Frequency up-conversion of coherent images by intracavity nondegenerate four-wave mixing / O. Ormachea [et al.] // Optics Express. 2006. Vol. 14. № 18. P. 8298-8304.
- Акимов А.А., Воробьева Е.В., Ивахник В.В. Четырехволновое взаимодействие на резонансной и тепловой нелинейностях // Компьютерная оптика. 2010. Т. 34. № 4. С. 506-510.
- Карпов С.В., Попов А.К., Слабко В.В. Фотохромные реакции в нанокомпозитах серебра с фрактальной структурой

и их сравнительные характеристики // Журнал технической физики. 2003. Т. 73. Вып. 6. С. 90-98.

- Ивахник В.В., Никонов В.И. Дифракционная эффективность динамической голограммы в обратимой фотохромной среде с учетом диффузии фотохромных частиц // Оптика и спектроскопия. 2003. Т. 94. № 1. С. 134–138.
- Акимов А.А., Воробьева Е.В., Ивахник В.В. Временная зависимость амплитуды объектной волны при четырехволновом взаимодействии с учетом резонансной и тепловой нелинейностей // Физика волновых процессов и радиотехнические системы. 2013. Т. 16. № 4. С. 7–13.
- Акимов А.А., Ивахник В.В., Никонов В.И. Обращение волнового фронта при четырехволновом взаимодействие на резонансной и тепловой нелинейностях при больших коэффициентах отражения // Оптика и спектроскопия. 2013. Т. 115. № 3. С. 438-445.
- Highly efficient degenerate four-wave mixing with multipass geometries in a polymer laser dye saturable amplifier / H. Watanabe [et al.] / Optics Letters. 1999. Vol. 24. № 24. P. 1620-1622.
- Веревкин Ю.К., Даумэ Э.Ю., Петряков В.Н. Четырехволновые взаимодействия в активной XeCl-плазме // Квантовая электроника. 2003. Т. 33. № 1. С. 76-80.
- Ivakhnik V.V., Savel'ev M.V. Degenerate four-wave mixing in transparent two-component medium considering spatial structure of the pump waves // Journal of Physics: Conference Series. 2016. Vol. 737. P. 012007.
- Ivakhnik V.V., Savelyev M.V. Four-wave mixing in a transparent medium based on electrostriction and Dufour effect at large reflectance // Physics Procedia. 2015. Vol. 73. P. 26-32.
- 16. Ивахник В.В., Савельев М.В. Пространственная селективность четырех-волнового преобразователя излучения в прозрачной двухкомпонентной среде в схеме с попутными волнами накачки // Компьютерная оптика. 2016. Т. 40. № 3. С. 322–330.
- Katzir I, Ron A, Firstenberg O. Diffraction manipulation by four-wave mixing // Optics Express. 2015. Vol. 23. № 5. P. 6379-6391.
- Smith P.W., Ashkin A., Tomlinson W.J. Four-wave mixing in an artificial Kerr medium // Optics Letters. 1981. Vol. 6. № 6. P. 284-286.
- Четырехволновое смешение в жидкой суспензии диэлектрических прозрачных микросфер / А.А. Афанасьев [и др.] // Журнал экспериментальной и теоретической физики. 2005. Т. 128. Вып. 3(9). С. 451–463.
- 20. Ивахник В.В., Савельев М.В. Пространственная селективность четырехволнового преобразователя излучения с учетом термодиффузионного и электрострикционного механизмов нелинейности // Физика волновых процессов и радиотехнические системы. 2013. Т. 16. № 1. С. 6–11.

Spatial selectivity of the four-wave radiation converter in an absorbing two-component medium at large reflectance

V.V. Ivakhnik, M.V. Savelyev

Spatial characteristics of the four-wave radiation converter in an absorbing two-component medium consisting of a liquid and nanoparticles dissolved in it are studied in the approximation of large reflection coefficients. Shown that the presence of a negative sign of the electrostriction coefficient leads to the emergence of a dip in the spatial spectrum of the object wave, the position of which is determined by the parameters of the two-component medium. With increasing intensity of the pump waves the band half-width of cut out frequencies and the dip width are observed to increase, and also the band half-width of the most efficiently converted frequencies decreases.

Keywords: four-wave radiation converter, spatial selectivity, absorbing two-component medium.

Неганов, В.А.

Физическая регуляризация некорректных задач электродинамики: линии передачи, антенны, дифракция электромагнитных волн / В.А. Неганов. – М.: САЙНС-ПРЕСС, 2008. – 432 с., 122 ил.

В.А. Неганов ФИЗИЧЕСКАЯ РЕГУЛЯРИЗАЦИЯ НЕКОРРЕКТНЫХ ЗАДАЧ ЭЛЕКТРОДИНАМИКИ

ISBN 978-5-88070-161-2

УДК 537.87 ББК 32.84 Н 41

Изложены основы физической регуляризации некорректных задач электродинамики, связанной с особенностями физических и математических моделей задач (физические допущения, некорректные математические выкладки, отсутствие предельного перехода). Подход, по мнению автора, обладает большими возможностями, чем метод регуляризации Тихонова А.Н. интегральных уравнений Фредгольма первого рода, названный в книге методом математической регуляризации. Метод физической регуляризации (МФР) применен к анализу

волноведущих и излучающих структур, а также задачам дифракции электромагнитных волн на некоторых телах. МФР позволил впервые корректно осуществить анализ полей в ближних зонах некоторых антенн, устранить несамосогласованное приближение Кирхгофа в задачах дифракции, установить связь поверхностной плотности тока проводимости с напряженностями электрического и магнитного полей для диполя Герца и т. п.

Для специалистов в области радиотехники и радиофизики СВЧ, электромагнитной совместимости РТС, математической теории дифракции и математического моделирования электродинамических структур самого широкого назначения. Может быть полезна преподавателям вузов, докторантам, аспирантам и студентам старших курсов соответствующих специальностей.