2019 г. Tom 22, № 1

# Физика волновых процессов и радиотехнические системы

УДК 621.373.12

# **Дискретная бигармоническая модель** томсоновских автогенераторов

И.Е. Борисова, А.А. Вербицкий, В.В. Зайцев

Самарский национальный исследовательский университет им. акад. С.П. Королева 443086, Российская Федерация, г. Самара Московское шоссе, 34

Для моделирования автоколебаний в генераторах томсоновского типа предложен численно-аналитический метод, базирующийся на представлении автоколебательной системы в виде совокупности двух осцилляторов — основной частоты и ее третьей гармоники. Ведущий осциллятор генерирует строго монохроматические автоколебания в дискретном времени и возбуждает вынужденные колебания осциллятора третьей гармоники. Основное внимание уделено автоколебаниям в трехточечных схемах с емкостной и индуктивной связями. Показано, что предложенный метод моделирования позволяет давать сравнительные оценки амплитуд гармонических составляющих спектра автоколебаний.

*Ключевые слова*: трехточечные схемы автогенераторов, метод гармонической линеаризации, гармоники автоколебаний, автоколебания в дискретном времени.

### Введение

К классическим схемам автогенераторов томсоновского типа относятся схема Хартли (индуктивная трехточка), схема Колпитца (емкостная трехточка) и схема Мейснера [1-3]. В квазигармоническом приближении динамика этих автоколебательных систем (АКС) адекватно описывается в рамках метода медленно меняющихся амплитуд. При высоких уровнях возбуждения для моделирования автоколебаний приходится использовать численные методы. Но этот путь для генератора Хартли сопряжен с определенными трудностями, поскольку математическая

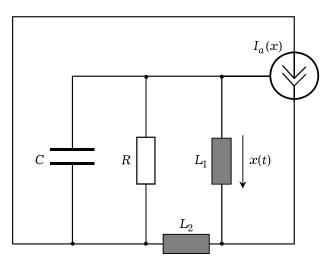


Рис. 1. Эквивалентная схема генератора Хартли

DOI: 10.18469/1810-3189.2019.22.1.32-35

модель генератора формулируется как задача Коши для нелинейного дифференциального уравнения, не разрешенного относительно старшей производной.

В настоящем сообщении предлагается комбинированный численно-аналитический метод моделирования АКС, базирующийся на представлении системы в виде совокупности осцилляторов основной частоты и ее третьей гармоники. Ведущий осциллятор генерирует строго монохроматические автоколебания в дискретном времени в соответствии с алгоритмом (разностным уравнением движения), предложенным в работе [4]. Осцилляторы гармоник — линейные осцилляторы с узкополосным возбуждением.

Основное внимание уделено анализу генерации третьей гармоники в схемах Хартли и Колпитца в сравнении с третьей гармоникой генератора Мейснера.

# 1. Эквивалентные схемы и уравнения движения

Генератора с автотрансформаторной связью – генератора Хартли. Его эквивалентная схема представлена на рис. 1.

Математическая модель АКС в форме дифференциального уравнения движения, составленного на основе ее схемы, имеет вид

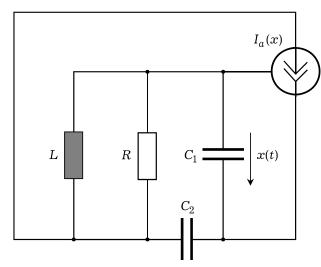


Рис. 2. Эквивалентная схема генератора Колпитца

$$\frac{d^2x}{dt^2} + \frac{\omega_0}{Q}\frac{dx}{dt} + \omega_0^2 x = -\frac{nZ_0}{\omega_0}\frac{d^3}{dt^3}I_a(x),\tag{1}$$

где  $\omega_0$ , Q и  $Z_0$  — собственная частота, добротность и характеристическое сопротивление LRC-контура ( $L=L_1+L_2$ );  $n=L_1L_2/(L_1+L_2)^2$  — коэффициент автотрансформаторной связи. Активный трехполюсник (генератор тока, управляемый напряжением) представлен в уравнении (1) вольтамперной характеристикой  $I_a(x)$ . В дальнейшем будем записывать ее в виде  $I_a(x)=G_0u(x)$ , где  $G_0$  — крутизна характеристики в малосигнальном (линейном) приближении, а для нелинейности примем «классическую» аппроксимацию

$$u(x) = x - \frac{x^3}{3}.$$

Дифференциальное уравнение (1) не разрешено относительно старшей производной, что затрудняет его численное интегрирование. Здесь предлагается один из способов решения этой задачи.

Для удобства дальнейших преобразований уравнение (1) запишем в виде

$$\frac{d^2x}{dt^2} + \frac{\omega_0}{Q}\frac{dx}{dt} + \omega_0^2 x = \gamma \omega_0 \frac{d}{dt} z(x(t)), \qquad (2)$$

где обозначено  $\gamma = nG_0Z_0$  и

$$z(x(t)) = -\omega_0^{-2} \frac{d^2}{dt^2} u(x(t)). \tag{3}$$

Константа  $\gamma$  связана с параметром превышения порога генерации соотношением  $p=\gamma Q$  (порог: p=1).

Генератор Колпитца. Эквивалентная высокочастотная схема генератора представлена на рис. 2. Дифференциальное уравнение движения, записанное на основе схемы рис. 2, имеет вид

$$\frac{d^2x}{dt^2} + \frac{\omega_0}{Q}\frac{dx}{dt} + \omega_0^2x = -n\omega_0^3 Z_0 \int_0^t I_a\left(x(t)\right)dt,\tag{4}$$

где  $\omega_0$ , Q и  $Z_0$  — собственная частота, добротность и характеристическое сопротивление LRC-контура ( $C^{-1}=C_1^{-1}+C_2^{-1}$ ), n=C / ( $C_1+C_2$ ). Вольтамперная характеристика активного трехполюсника  $I_a(x)$  имеет тот же вид, что и в генераторе Хартли (1).

Уравнение (4) приведем к форме (2)

$$\frac{d^2x}{dt^2} + \frac{\omega_0}{Q}\frac{dx}{dt} + \omega_0^2 x = \gamma \omega_0 \frac{d}{dt} z(x(t)),$$

где теперь введено обозначение

$$z(x(t)) = -\omega_0^2 \int_0^t dt' \int_0^t dt'' u(x(t'')). \tag{5}$$

Отметим, что уравнение (2) при условии z(x(t)) = u(x(t)) моделирует автоколебания в генераторе Мейснера (см. рис. 3).

## 2. Бигармоническая модель автоколебаний

Для осцилляций

$$x(t) = x_1(t) = a_1 \cos(\omega_0 t)$$

с амплитудой  $a_1$  функция  $u\left(x_1(t)\right)$  в правой части уравнения (2) представляется рядом Фурье

$$u\left(x_1(t)\right) = u_1(a_1)\cos\left(\omega_0 t\right) +$$

$$+u_3(a_1)\cos(3\omega_0 t),$$

где

$$\begin{split} &u_1(a_1) = \left(1 - \frac{1}{4}a_1^2\right)a_1 = \\ &= S(a_1^2)a_1, \ u_3(a_1) = -\frac{1}{12}a_1^3. \end{split}$$

Интегро-дифференциальные преобразования в функциях, входящих в правые части уравнений (2) в дальнейшем проводится с учетом медленности амплитуды  $a_1$ . Поэтому приближенное выражение для осциллирующих функций (3) и (5) имеет вид

$$z(x_1(t)) = u_1(a_1)\cos(\omega_0 t) + +ku_3(a_1)\cos(3\omega_0 t),$$
(6)

где множитель k=9 для схемы Хартли, k=1/9 для схемы Колпитца и k=1 для схемы Мейснера.

Теперь приравнивая соответствующие гармоники в правой и левой частях уравнения движения (2), его можно свести к совокупности двух осцилляторов первой  $x_1(t)$  и третьей  $x_3(t)$  гармоник:

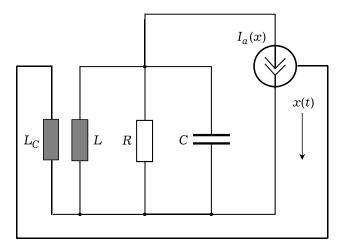


Рис. 3. Эквивалентная схема генератора Мейснера

$$\frac{d^2x_1}{dt^2} + \frac{\omega_0}{Q} \frac{dx_1}{dt} + \omega_0^2 x_1 = \gamma \omega_0 S(a_1^2) \frac{dx_1}{dt},\tag{7}$$

$$\frac{d^2x_3}{dt^2} + \frac{\omega_0}{Q} \frac{dx_3}{dt} + \omega_0^2 x_3 = 
= -3k\gamma\omega_0^2 u_3(a_1)\sin(3\omega_0 t).$$
(8)

Для анализа генерации первой гармоники линеаризованным осциллятором (7) воспользуемся его дискретной моделью, предложенной в работе [4]. Предполагая дискретизацию времени с интервалом  $\Delta$  в уравнение (7) вводится безразмерная временная переменная  $\tau = t / \Delta$ :

$$\frac{d^2x_1}{d\tau^2} + 2\pi\nu \frac{dx_1}{d\tau} + 4\pi^2 \Omega_0^2 x_1 = 2\pi\nu p S(a^2) \frac{dx_1}{d\tau}.$$
 (9)

Здесь  $\Omega_0=\omega_0$  /  $\omega_d$  — собственная частота, измеряемая в единицах частоты дискретизации  $\omega_d=2\pi$  /  $\Delta$ ;  $\nu=\Omega_0$  / Q — полоса резонатора.

На временной сетке  $\tau_n=n$  дифференциальное уравнение (9) заменяется разностным уравнением

$$x[n] - 2\alpha \cos(2\pi\Omega_0)x[n-1] + \alpha^2 x[n-2] =$$

$$= \frac{\varepsilon}{2} (2 - W[n - 1]) \times \tag{10}$$

$$\times (\cos(2\pi\Omega_0)x[n-1]-x[n-2]),$$

где  $\varepsilon=2\pi\alpha\nu p$  и  $\alpha=\exp(-\pi\nu)$  — параметры глубины обратной связи и диссипативности. При этом мощность автоколебаний  $W=a_1^2/2$  вычисляется по мгновенным значениям осцилляций:

$$\begin{split} W[n] &= \frac{1}{2\sin^2\left(2\pi\Omega_0\right)} \times \\ &\times \left(x^2[n] - 2\cos\left(2\pi\Omega_0\right)x[n]x[n-1] + x^2[n-1]\right). \end{split} \tag{11}$$

Таким образом, дискретный осциллятор (8)— (9) моделирует первую гармонику автоколебаний.

Колебания линейного осциллятора третьей гармоники (8) с квазистационарным возбужде-

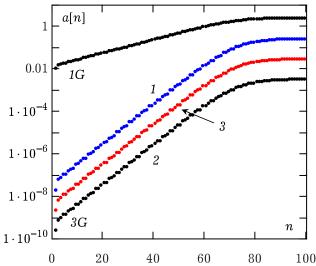


Рис. 4. Временные зависимости амплитуд первой (1G) и третьей (3G) гармоник автоколебаний в схемах Хартли (1), Колпитца (2) и Мейснера (3)

нием проанализируем методом медленно меняющихся амплитуд, в рамках которого осцилляции представляются в виде

$$x_3(t) = \frac{1}{2} A_3(t) \exp(j3\omega_0 t) + \frac{1}{2} A_3^*(t) \exp(-j3\omega_0 t)$$

и для «медленной» комплексной амплитуды  $A_3(t)$  записывается укороченное уравнение

$$j6\omega_{0} \left( \frac{d}{dt} A_{3}(t) + \frac{\omega_{0}}{2Q} A_{3}(t) \right) - 8\omega_{0}^{2} A_{3}(t) = j3k\gamma\omega_{0}^{2} u_{3}(a_{1}).$$

С учетом того, что Q >> 1 и  $\left|dA_3 / dt\right| << \omega_0 \left|A_3\right|$  первыми двумя слагаемыми в этом уравнении можно пренебречь. Тогда

$$a_3(t) = \frac{3}{9}k\gamma u_3(a_1(t)). \tag{12}$$

На рис. 4 для иллюстрации показан процесс установления амплитуды  $a_1[n] = \sqrt{2W[n]}$  автоколебаний основной частоты и амплитуды  $a_3[n]$  третьей гармоники в рассматриваемых генераторах при  $\Omega_0=0.19,\ Q=30,\ p=5.$ 

Из выражения (12) следует очевидный вывод о том, что при одинаковых условиях амплитуды третьих гармоник в схемах Хартли, Мейснера и Колпитца находятся в отношении  $9:1:9^{-1}$ . Предложенная модель дает простое объяснение этому эффекту — ток возбуждения колебательного контура в схемах Хартли и Колпитца подвергается дополнительным, по сравнению со схемой Мейснера, преобразованиям. Дифференцирование тока в схеме Хартли увеличивает повышает уровень высокочастотных составля-

ющих спектра автоколебаний, в то время как интегрирование тока в схеме Колпитца снижает этот уровень.

### Заключение

Предложенный метод моделирования АКС дает наглядное представление о соотношении уровней гармоник в основных схемах автогенераторов томсоновского типа. В рамках классификации теории нелинейных колебаний представленная модель соответствует улучшенному первому приближению метода усреднения.

### Список литературы

- 1. Евтянов С.И. Ламповые генераторы. М.: Связь, 1967.384 с.
- Капранов М.В., Кулешов В.Н., Уткин Г.М. Теория колебаний в радиотехнике. М.: Наука, 1984. 320 с.
- 3. Титце У., Шенк Л. Полупроводниковая схемотехника. 12-е изд. Т. 2. М.: ДМК Пресс, 2015. 943 с.
- Зайцев В.В., Федюнин Э.Ю. Генератор монохроматических автоколебаний в дискретном времени // Физика волновых процессов и радиотехнические системы. 2018.
   Т. 21. № 1. С. 54-57.

# The discrete biharmonic model of Thomson self-oscillators

I.E. Borisova, A.A. Verbitsky, V.V. Zaitsev

For modeling of self-oscillations in generators of Thomson type the numerical-analytic method is offered. The method is based on representation of self-oscillatory system in the form of set of two oscillators — the main frequency and its third harmonica. The leading oscillator generates strictly monochromatic self-oscillations in discrete time and excites on the oscillator of the third harmonica. The main attention is paid to self-oscillations in three-point schemes with capacitor and inductive communications. It is shown that the offered method of modeling allows to give comparative estimates of amplitudes of harmonious components of a spectrum of self-oscillations

Keywords: three-point schemes of oscillators, method of harmonious linearization, harmonicas of self-oscillations, self-oscillations in discrete time.

#### Неганов, В.А.

**Теория и применение устройств СВЧ: учебн. пособие для вузов** / В.А. Неганов, Г.П. Яровой; под ред. В.А. Неганова. – М.: Радио и связь, 2006. – 720 с.



ISBN 5-256-01812-4

УДК 621.396.67 ББК 32.840 Н 41

В учебном пособии рассматриваются методы проектирования и конструктивной реализации устройств СВЧ: линий передачи различных видов, резонаторов, согласующих и трансформирующих устройств, фильтров, фазовращателей, аттенюаторов, тройниковых соединений, направленных ответвителей, различных мостовых соединений, ферритовых устройств (вентилей, циркуляторов, фазовращателей) и СВЧ-устройств на полупроводниковых диодах (умно-

жителей, смесителей, переключателей, выключателей). Приводятся примеры применения устройств СВЧ в радиосвязи, радиолокации, измерительной аппаратуре и т. д. В книгу вошел оригинальный материал, полученный авторами. Учебное пособие может использоваться как справочник по устройствам СВЧ.

Для специалистов в области теории и техники СВЧ, преподавателей вузов, докторантов, аспирантов, студентов старших курсов радиотехнического и радиофизического профиля.