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Abstract – The article is devoted to the analysis of electrodynamic properties elliptical frame structure. Taking into account 
double symmetry internal problem of electrodynamics for the structure under consideration in the framework of the thin-wire 
approximation is reduced to four integral Fredholm equations of the first kind, written with respect to independent current 
functions. A study of spectral characteristics of the integral operators of the corresponding integral equations for various values 
of the electrical length and ellipticity of the frame. It is shown that the eigenfunctions of integral operators for close values 
of these parameters have a high degree of correlation, with In this case, the eigenfunctions are close in form to trigonometric 
functions. Features of the frequency dependence of the eigenvalues integral operators. The conclusion is made about the resonant 
nature of these dependences, what makes an elliptical frame structure in many respects similar to the previously considered 
tubular vibrator and spherical spiral particle. The results presented in the article form an in-depth understanding of the processes 
occurring in the structure under consideration, and also serve as a guideline in the construction of approximation models for 
solving the internal tasks.

Keywords – elliptical loop structure; loop antenna; integral representation of the electromagnetic field; current distribution; 
integral equation; eigenfunctions; eigenvalues.

Introduction
Loop antennas are one of the most common types 

of antennas, and they have several applications (tel-
evision, cellular communications, radio communi-
cations, etc.). Theoretical research on loop antennas 
has been conducted for quite a long time; hence, a 
rather large number of scientific works on this sub-
ject now exist. At present, the characteristics of such 
structures can be calculated with a high degree of 
accuracy using computer-aided design systems, en-
gineering equations, and developed models of other 
works that have varying degrees of complexity. In [1], 
a loop antenna is examined in the approximation of 
the uniform current distribution. In [2], the long-line 
theory is applied for the calculations. In [3; 4], in the 
cross section of a conductor with small wave sizes, a 
quasistatic approximation is introduced for the cur-
rent distribution. In [5], a ring stripline antenna is 
considered, for which an infinite set of integral equa-
tion systems (IESs) are developed with respect to the 
Fourier harmonics of the components of the surface 
current density vector on the strip. The obtained re-
sults allow estimation of the relationship between the 
amplitudes of the longitudinal and transverse current 
components.

It is worthy to note that rigorous mathemati-
cal models have been designed mostly only for ring 
frames with the simplest geometry. The axial symme-

try of the structure present in this case significantly 
simplifies the solution of the interior problem. Rig-
orous models of frames of more complex configura-
tions (e.g., elliptical, polygonal) are not so common; 
therefore, developing such mathematical models is 
urgently needed. Even for rigorous models developed 
in the form of IE (including singular ones), authors, as 
a rule, limit themselves to the analysis of the quanti-
tative characteristics of current distributions without 
investigating the reasons that result in the formation 
of these distributions. This aspect is critical to pro-
ducing an adequate pattern of the interior physical 
processes in the structures being considered. This 
problem can be solved using the eigenfunction meth-
od (EFM) developed in [6]. Previously, this method 
was applied by the authors to the analysis and con-
struction of an approximation of the interior prob-
lem solution for a tubular electric dipole [7; 8]. An al-
ternative to EFM is the characteristic mode method 
[9–11]. Its advantages over EFM are the simplicity of 
the numerical implementation; however, a significant 
disadvantage of this method is the low stability of the 
computational procedure.

We discuss a mathematical model of an elliptical 
frame (EF) structure expressed in the form of four in-
dependent IEs. The solution to the interior electrody-
namic problem is developed on the basis of EFM. The 
method of EF excitation was not specified to increase 
the generality of the presented results, i.e., the devel-
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Fig. 1. Thin-wire model of an elliptic frame antenna
Рис. 1. Тонкопроволочная модель эллиптической рамочной 
антенны

oped model can be employed to solve both antenna 
and diffraction problems. In a given frequency range 
for different variants of the EF geometry, the spectral 
characteristics of the integral operators of the corre-
sponding IEs were analyzed.

1. Statement of the problem
Consider solving the interior problem of electro-

dynamics on an EF structure using the eigenfunction 
method. The geometry of the structure is shown in 
Fig. 1. An EF conductor, which has infinitely high 
conductivity, has a circular cross section with a diam-
eter ,ε2  which is much less than the wavelength λ and 
the total length L of the conductor generatrix. There-
fore, for EF, it is desirable to utilize the thin-wire 
approximation, within which the volumetric current 
density is decreased to the azimuthally independent 
total current flowing along the conductor generatrix. 
Hereafter, the symbol L denotes a generatrix.

The parametric equation of the EF generatrix L has 
the form

ˆˆcos sinx yt r t r t t+ ∈ πr x y( ) = , [0;2 ].  (1)

Here, t is the azimuth of a cylindrical or spherical co-
ordinate system and xr  and yr  are the major and mi-
nor semiaxes of the ellipse, respectively. The natural 
parameter on the spirals is calculated using

sin cos
t t

x
d tl t dt r t t dt

dt
′ ′ ′ ′+ κ∫ ∫

r 2 2

0 0

( )( ) = = ,  (2)

Here, y xr rκ ≤= / 1  is the ellipticity coefficient. In the 
natural parameter, the equation of the generatrix of 
the spiral is obtained using Eq. (1) after .t t l= ( )  The 
function t l( )  is determined numerically from Eq. (2) 
by the inverse interpolation method. The length of the 

EF generatrix is described as L l π= (2 ) = ,xr E − κ24 ( 1 )  
where E x( )  is a complete elliptic integral of the sec-
ond kind [12]. The radius of curvature ρmin of the EF 
generatrix L has a minimum value at points that cor-
respond to t = 0  and :t π=  min .xrρ κ=  This equality 
needs the imposition of an additional condition on 
the radius of the conductor .xrε κ

Within the adopted model, the EFM structure 
is described by an integral representation (IR), de-
scribed in detail in [13]:

F
L
I l l dl F E H′ ′ ≡∫F r K r r( )( ) = ( ) ( , ( )) , , ;  (3)

Here, FK( )  are kernels of the integral representation, 
I l( )  is the total current distribution on the generatrix 
of the conductor, and r is the radius vector of the ob-
servation point. The correctness and reliability of the 

results obtained using EFM IR of Eq. (4) are verified 
in [14; 15].

The structure under consideration with κ < 1  has 
double mirror symmetry relative to the planes XOZ 
and YOZ; therefore, it can be divided into four identi-
cal parts, which generatrices ,nL L′≡  and described 
by general equations

ˆˆcos sinx y
n n x n yt s r t s r t+r x y( ) ( )( ) = ,

t n∈ π[0; / 2], = 1 4.

y yx xs s s s −( ) ( )( ) ( )
1 21 2{ , } = {1,1}; { , } = { 1,1};

y yx xs s s s− − −( ) ( )( ) ( )
3 4 43{ , } = { 1, 1}; { , } = {1, 1};

In this case,
F

n nL
n

I l l dl
′

′ ′ ′∑∫F r K r r( )( ) = ( ) ( , ( )) ,  (4)

F E H n≡ , ; = 1 4.

Here, nI l( )  is the current distribution of the corre-
sponding generatrix. Let us set the following bound-
ary condition

in ˆE l E l l+ ⋅r r l( )( ( ( )) ( ( ))) ( ) = 0

on each generatrix, and thus, the following IE system 
is obtained

n m n mL
n

I l K l l dl E l
′

′ ′ ′∑∫
4

,
=1

( ) ( , ) = ( ),

m l L L′∈= 1 4, = / 4.

Here,
inˆ

m m mE l l E l− ⋅l r( )( ) = ( ) ( ( )),  (5)

ˆ E
m n m m nK l l l l l′ ′⋅l K r r( )

, ( , ) = ( ) ( ( ), ( ))

are the tangential components of the external electric 
field on the generatrices and kernels of the IE system, 
respectively. Due to the symmetry of the structure, 
we obtain the following equations:

m m m mK K K K m−, 1 ,5 4= , = , = 1 4;

K K K K K1,2 2,1 3,4 4,3 2= = = = ;
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K K K K K1,3 3,1 2,4 4,2 3= = = = .

For functions ,mE  mI , and ,mK  the following 
transformations are valid:

m m n n
n

F w F∑
4

,
=1

1= ,
2

  (6)

m m n n
n

F w F F E I K≡∑
4

,
=1

1= , , , ,
2



where m nw ,  are the elements of the Walsh matrix:

ˆ

 
 − − 
 − −
  − − 

W

1 1 1 1
1 1 1 1

= .
1 1 1 1
1 1 1 1

Regarding functions mE  and ,mI  the original IE 
system is divided into four independent subsystems: 

m m mL
E l I l K l l dl m l L

′
′ ′ ′ ′∈∫( ) = ( )(2 ( , )) , = 1 4, .  

  (7)

Physically, the planes XOZ and YOZ are an electric 
or magnetic wall for the structure being considered; 
thus, the following boundary conditions are valid for 
the functions iI  and their derivatives :iI'

I I L I I L′ ′1 1 2 2' (0) = ' ( ) = 0; (0) = ' ( ) = 0;     (8)

I I L I I L′ ′3 3 4 4' (0) = ( ) = 0; (0) = ( ) = 0.   

We approximate the generatrices iL  by kinked 
curves ,N

iL( )  having N segments of equal length Δ. 
Within the method of moments, we employ constant 
functions within the segment as basis functions and 
delta functions localized at the center of the segment 
as test functions. As a consequence, four independent 
SLAEs are obtained with the general form:

ẐI E= .  (9)

where ˆ ˆ mZ Z( )=  are moment matrices with elements 
,m

i jz( )
,  mI I( )=  are vectors of complex amplitudes of 

currents m
jI( )  on segments, and mE E( )=  are vectors 

with the values of external field functions m
jE( )  at the 

centers of segments

i

i

l
m N

i j m i
l

z K l l dl
+∆

−∆

′ ′∫
*

*

/2
( ) ( ) *
,

/2

= 2 ( , ) ,

m m
j m j j m jI I l E E l( ) * ( ) *= ( ), = ( );

Here, i i il l l+ +*
1= ( ) / 2  are the values of the natural 

parameter at the centers of the segments, li are the 
values of the natural parameter at the boundaries 
of the segments, and the superscript “N” in the ker-
nels mK  refers to that in m nK ,  described by the sec-
ond equation of Eq. (5), and rather than the original 

generatrices m lr ( ) , their linearized approximations 
.N

m lr( ) ( )  are applied. Furthermore, if there is no need, 
the index m for the matrices and vectors is omitted.

The complete eigenvalue problem (EVP) for a ma-
trix Ẑ  is expressed as follows:
ˆˆ ˆˆZJ XJ= .  (10)

In this equation, Ĵ  is a matrix in which columns 

iJ  are eigenvectors (EVs) of ˆ,Z  while all EVs have 
unit norm ;nJ| |= 1  X̂ is a diagonal matrix in which 
diagonal elements i i iξ ξ ∈X, =  are eigenvalues of ˆ.Z  
Here, it should be noted that the SLAE of Eq. (9) is 
equivalent to the IE of Eq. (7) with a degenerate ker-
nel, calculated for segmented generatrices, and the 
EVs nJ  approximate the eigenfunctions (EFs) nJ l( )  of 
the integral operator of the problem of Eq. (7). Solving 
the complete eigenvalue problem for complex matri-
ces is a standard linear algebra problem that is solved 
using the QR algorithm [16]. The SLAE solution with 
known Ĵ  and X̂  will have the following form:

ˆˆ ˆT−I JX J E1= ( ) .

The index “T” is the transpose operation. The ma-
trix X̂  is diagonal; therefore, calculating the inverse 
matrix is not much of a problem. Physically, the study 
of the dependence of EV and EVP on frequency and 
structure parameters is of particular interest because 
they largely determine the nature of the interior 
problem solution. In addition, these studies are the 
basis for constructing approximation models of solu-
tions [8].

In our case, the length of the EF generatrix L should 
be selected as the main parameter normalized to the 
wavelength .x L λ= /  We will use the ellipticity coef-
ficient κ as parameter 2. The normalized parameter 3 
is the ratio of the wire radius ε to the length of the 
EF generatrix L. Due to the conditions listed earlier, 
it does not have a significant effect on the solution 
interior problem. Therefore, we assume const.Lε / =

It should also be noted here that with κ = 1  EF, it 
has axial symmetry, and the eigenfunctions of the 
integral operator can be expressed through a pair of 
corresponding trigonometric functions. In this case, 
the form of the eigenfunctions does not depend on 

.L λ/

2. Numerical modeling and 
analysis of the results

The problem of Eq. (10) was solved in a rectangular 
area:

min max min maxx x x x∈ κ∈κ κ κ: :[ ; ], :[ ; ].
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At intervals x  and ,κ  fN  nodes fx  and rN  nodes 

rκ  were introduced uniformly, respectively, form-
ing in pairs a set of points .f rx κ ∈{ , }   In the cal-
culations, it was assumed that min , ,x = 0 01  max ,x = 5  

min , ,κ = 0 5  max ,κ = 1  ,fN = 500  .rN = 11
The number of segments N during linearization of 

the generatrix was assumed to be 100, and the ratio 
L′ε /  was selected to be equal to 3 / 250  to give the 

condition ε ≤ ∆ ≤ ε2 12  [17] necessary to provide a sta-
ble solution of the SLAE within the selected system 
of projection functions. In this case, min L′ρ /  with 

,κ = 0 5  is approximately 0,4, which corresponds to 
the previously stated condition min.ε ρ

Calculation of EVP X and EV Ĵ  was conducted us-
ing the ZGEEV procedure [18], which is included in 
the open source library LAPACK [19]. An important 
aspect when performing range calculations in region 
  is tracking the numbers of EV and EVP [20; 21], 
since for different values of x and κ, the ZGEEV pro-
cedure places EV and EVP in the returned arrays in 
different manners. Thus, the direct calculation of EV 
and EVP in practice must be supplemented with an 
algorithm for tracking and sorting them as well as an 
algorithm for correcting the sign of EV. A correlation 
algorithm was employed to obtain the results of this 
study. It was also previously used in [6], but unfortu-
nately, it was not described in detail because of the 
limited scope of the article. In this article, we will fill 
this gap.

Let ˆ
f rx κJ * *( , )  be the EV matrix, which we take as 

a sample, and ˆ
f rx κJ( , )  be a matrix that needs to be 

sorted by EV and adjusted from signs. The essential 
aspect here is the following conditions:

f ff f
x x x x− +* *2 | | / | | 1;  (11)

f ff f
κ − κ κ + κ* *2 | | / | | 1,

that is, calculations must be conducted for matrices 
located in close points of region ,  which guarantees 
a high degree of EV correlation. For distant points, 
EVs with the same indices may have a low degree of 
correlation and a very different shape. To correct the 
numbers and signs of EV, it is necessary to compute 
the correlation matrix:

ˆ ˆ ˆT
f r f rx xκ κK J J* *= ( , ) ( , ).

Next, each line K̂  is normalized to the element of 
the corresponding line with the maximum absolute 
value. After this step, each line K̂  will contain one 
element ,i jk ,  with a value of 1 or –1, and the values 
of the remaining elements under the condition of 
Eq. (11) will be significantly less than 1 in absolute 

value. The column with the index i of the adjusted 
matrix ˆ

f rx κJ( , )  will correspond to the j-th column 
of the original matrix ˆ ,f rx κJ( , )  multiplied by a scalar 

i jk ,  (sign correction). The position of the element i jk ,  
is also employed to adjust the numbers of the EVP 
vector f rx κX( , )  (without adjusting the sign). Here, 
i is the position in the adjusted EVP vector, and j is 
the position in the original EVP vector. After correc-
tion, the matrix ˆ

f rx κJ( , )  can be taken as reference 
( ;f fx x→ *  )r rκ → κ *  and the procedure can be re-
peated for the matrix ˆ,J  calculated at a new point in 
region   that meets the condition of Eq. (11).

In our case, the matrix ˆ .x κJ 1 1( , )  was taken as ref-
erence. At stage 1, matrices ˆ

rx κJ 1( , )  and vectors

rx κX 1( , )  were corrected for .rr N= 2  At stage 2, 
the corrected matrices were employed to correct ma-
trices ˆ

f rx κJ( , )  and vectors f rx κX( , )  for the corre-
sponding index r  ( ).fr N= 2

Numerical calculations have two aims. The first 
aim, which has predominantly practical significance, 
is associated with determining the possibilities of 
constructing an approximation model for solving an 
interior problem based on the EFM. To realize this 
goal, it becomes necessary to solve some tasks. Task 1 
includes the analysis of the degree of correlation of 
EV calculated at various points in region .  This in-
formation is crucial to determine the possibility of 
constructing an approximation of the EV matrices in 
the specified area. Task 2 is associated with the anal-
ysis of EF forms ,nJ l( )  determined by the result of 
interpolation of the corresponding columns of matri-
ces ˆ,J  with collocation points ,il

*  with i N= 1  act-
ing as interpolation nodes. Based on the findings of 
this analysis, it is possible to determine the systems 
of functions that are most suitable for approximating 
eigenfunctions in the form of corresponding series. 
Task 3 is associated with the analysis of the EVP be-
havior in region .  This analysis, as in the case of the 
EV, allows determination of the systems of functions 
that are most applicable for approximating the EVP 
for various points of .

The second aim is mainly of theoretical signifi-
cance and is associated with determining the nature 
of the frequency dependence of EVP. Earlier in [6; 7], 
for other structures, it has already been revealed that 
this dependence has a resonant nature; therefore, the 
main contribution to the formation of a solution to 
the interior problem is made by only a small part of 
EF. In this case, we need confirmation of this fact 
with some additional details for the structure being 
considered. To estimate the residual between vector 
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 a b
Fig. 2. Dependence rρ  on ;rκ

*  a – , ;x = 0 01  b – ,x = 5  the number of the curve corresponds to the number of SLE
Рис. 2. Зависимость rρ  от ;rκ

*  а – , ;x = 0 01  б – ,x = 5  номер кривой соответствует номеру СЛАУ

  
 a b
Fig. 3. dependence fρ  on ;fx*  a – , ;κ = 0 95  b – , ,κ = 0 5  the number of the curve corresponds to the number of SLE
Рис. 3. Зависимость fρ  от ;fx*  а – , ;κ = 0 95  б – , ,κ = 0 5  номер кривой соответствует номеру СЛАУ

or matrix arrays V calculated at a pair of points in 
region ,  we use the general equation

res lg .x xx x
x x

 κ − κ κ κ
 κ + κ 

V VV
V V

* *
* *

* *
| ( , ) ( , ) |( ; , ; , ) = 2
| ( , ) ( , ) |

Figure 2 illustrates the graphs of values rρ =
ˆres r rx x+= κ κJ 1( ; , ; , )  for case ,x = 0 01  (a) and case 

x = 5  (b). The value rκ
* = .r r+κ + κ1( ) / 2  is plotted 

along the abscissa axis. It can be observed that the 
residual values for different m differ markedly, while 
the residual increases with decreasing κ and increas-
ing x. However, generally, for a rather small value of 

,rN  the results can be considered quite good. The re-
sidual can be reduced by decreasing the distance be-
tween nodes near min.κ  At x located near max ,x  this 
will not be sufficient. This also requires an increase 
in .rN

Figure 3 exhibits the graphs of values rρ =
ˆres f fx x+= κ κJ 1( ; , ; , )  for case ,κ = 0 95  (a) and case 

,κ = 0 5  (b). The value fx* = f fx x+ +1( ) / 2  is plotted 
along the abscissa axis. Here, it can be observed that 
the values of the residual are significantly smaller 
than in the previously considered case, but its spread 
is also significantly higher, reaching its minimum 
value at minx x=  and its maximum at max.x x=  To re-
duce the spread of the residual, one should use an un-
even arrangement of nodes xf, the distance between 
which should decrease with increasing x. Generally, 
it should be mentioned that determining the location 
of control points for a given residual value is an in-
dependent and quite interesting computational prob-
lem that has application significance.

Figure 4 shows the graphs of values nρ =
res ,n f fx x+= κ κJ 1( ; , ; , )  detailing the residual on x for 

different EV numbers n at the corner points of region 
.  The SV number is plotted along the abscissa axis. 

It is clear that the largest contribution to the previ-
ously considered residual values is made by EVs with 



63
Physics of Wave Processes and Radio Systems, 2023, vol. 26, no. 1, pp. 58–69
Физика волновых процессов и радиотехнические системы. 2023. Т. 26, № 1. С. 58–69

  
 ;f = 1  κ = 1  ;f = 499  κ = 1

  
 ;f = 1  ,κ = 0 5  ;f = 499  ,κ = 0 5
Fig. 4. Dependence nρ  on n, the number of the curve corresponds to the number of SLE
Рис. 4. Зависимость nρ  от n, номер кривой соответствует номеру СЛАУ

small n, which is a good guideline when constructing 
EV approximations in region .

Figure 5 shows the graphs of the real and imagi-
nary parts of the first four eigenfunctions calculated 
at ,x = 5  , .κ = 0 5  It can be observed that they corre-
spond to the conditions of Eq. (8). It is clear that EF 
can be approximated by rapidly converging series of 
trigonometric functions. It can also be noted that for 

,κ = 1  the function J l1( )  has a uniform distribution, 
and for , ,κ = 0 5  the uniformity is violated, and its 
maximum shifts to a point with a smaller radius of 
curvature.

The ratio of the intensities of the real and imagi-
nary parts of the eigenfunctions can be estimated by 
the magnitude n xζ ( ) = Im Re ,n nJ x J x| ( ) | / | ( ) |  and the 
graphs are shown in Fig. 6. In all cases, a general ten-
dency is observed that at small values of x, the inten-
sity of the imaginary part of the eigen functions is 
small; therefore, the oscillations of the EF point oc-
cur almost in-phase. As x increases, the intensity of 
the real and imaginary parts becomes commensurate, 
which results in a violation of the in-phase oscilla-

tions. In addition, at large values of x, there are points 
at which the intensity of the EF imaginary part is tens 
of times greater than that of the real part.

Figure 7 shows the graphs of the values

lg argn n n nx x x x′ ′′ν ξ ν ξ( ) = | ( ) |; ( ) = ( )

at , .κ = 0 5  The figure verifies the resonant nature 
of the behavior of the eigenvalues, while the reso-
nance points can be determined from the condition 

.n x′′ν ( ) = 0  For ,m = 1,4  medium frequency resonances 
are registered in the vicinity of even values of x, while 
for different m, the same resonances correspond to 
EVs, whose indices differ by one. It should separately 
be noted the nonresonant maximum ′ν1  in the vicin-
ity of x = 0  for .m = 1  Also, it is clear that the qual-
ity factor of the resonances at m = 1  is slightly higher 
than that at m = 4  because .κ < 1

An important aspect in the analysis was consid-
ering the symmetry, since in the structure under 
consideration a degeneracy effect is noted, which 
consists of the coincidence of resonance points for 
the EVP of matrices of various SLAEs. This effect is 
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n Re nJ l( ) Im nJ l( )

1

2

3

4

Fig. 5. View of the first four of its own functions ;nJ l( )  ,x = 5  , ,κ = 0 5  the curve number corresponds to the number of SLE
Рис. 5. Вид первых четырех собственных функций ;nJ l( )  ,x = 5  , ,κ = 0 5  номер кривой соответствует номеру СЛАУ

noted for .m = 2,3  Meanwhile, it is clear that the cor-
responding resonances at m = 3  have a higher quality 
factor because .κ < 1

Generally, we can conclude that the structure un-
der study in terms of the behavior of eigenvalues and 
the shape of eigenfunctions is in many ways similar 
to the previously considered tubular dipole [7; 8] and 
a spherical spiral particle [6]. Thus, the previously 

proposed strategies regarding the construction of an 
approximation model to solve the interior electrody-
namic problem are fully applicable to the structure 
under consideration.

Conclusion
This study considers a variant of a mathematical 

model to solve an interior electrodynamic problem for 
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 n = 1  n = 2

  
 n = 3  n = 4
Fig. 6. Dependence nζ  on x; , ,κ = 0 5  the number of the curve corresponds to the number of SLE
Рис. 6. Зависимость nζ  от x; , ,κ = 0 5  номер кривой соответствует номеру СЛАУ

an elliptical spiral structure constructed by thin-wire 
approximation. The structure has double mirror sym-
metry, which allows the generation of a mathematical 
model in the form of four independent Fredholm IEs 
of the first kind, written relative to the corresponding 
current functions that meet the boundary conditions 
for the electric or magnetic wall at the points of in-
tersection of the generatrix of the structure with the 
symmetry planes. Within the method of moments, 
the reulting IEs were reduced to SLAEs relative to 
the values of the current functions on the segments 
of the linearized generatrix. Solutions of the SLAE 
are expressed in terms of the eigenvectors and eigen-
values of the SLAE matrix. The eigenvectors of the 
SLAE approximate the eigenfunctions of the inte-
gral operator of the corresponding IE. For each IE, 
the behavior of the eigenfunctions and eigenvalues of 
the integral operator was examined depending on the 
electrical length of the generatrix of the structure and 
the ellipticity coefficient at a fixed electrically small 
radius of the conductor.

An estimate of the residual between the eigenfunc-
tions calculated for different values of the specified 

parameters is given. It is shown that the discrepancy 
increases with increasing electrical length of the gen-
eratrix of the structure and with decreasing ellipticity 
coefficient; however, at the selected step of changing 
the parameters, it has rather small values. A more de-
tailed analysis allowed us to conclude that the most 
significant contribution to the value of the residual is 
made by the eigenfunctions of the lower types. This 
information forms the primary guideline when con-
structing an approximation model to solve the inte-
rior problem of the structure under consideration.

Analysis of the forms of eigenfunctions showed 
their closeness to trigonometric functions. There-
fore, they can be approximated by the corresponding 
series, which in this case exhibit rapid convergence. 
Inthe limiting case, when the ellipse degenerates 
into a circle, each eigenfunction can be analytical-
ly precisely determined by a pair of trigonometric 
functions.

An analysis of the dependence of the eigenvalues 
on the electrical length of the generatrix confirmed 
their resonant nature. Thus, the structure considered 
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m = 1

m = 2

m = 3

m = 4

Fig. 7. Dependencies ′ν  and ′′ν  on x  various values m; ,κ = 0 5
Рис. 7. Зависимости ′ν  и ′′ν  от x  при различных значениях m; ,κ = 0 5
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from this viewpoint is in many ways similar to the 
electric dipole and spherical spiral particles previ-
ously considered by the authors. That is, it can be 
argued that a rather limited set of eigenfunctions 
makes a significant contribution to the solution of 
the interior problem. It is also worth mentioning here 
that considering the symmetry of the structure sig-
nificantly simplifies the numerical analysis when the 
degeneracy effect occurs, when one eigenvalue can 
correspond to more than one eigenfunction, which is 
noted in this case with values of the ellipticity coeffi-
cient tending to unity. At lower values of the elliptic-
ity coefficient, only the effect of the degeneration of 
resonant frequencies is noted.

This work has both theoretical and practical sig-
nificance. The theoretical significance is related to 
the development of methods for the electrodynamic 
analysis of frame emitting and re-emitting struc-
tures. The proposed approach offers an in-depth un-
derstanding of the behavior of the structures under 
consideration from the viewpoint of electrodynam-
ics and significantly simplifies the interpretation of 
the obtained numerical results compared with direct 
solving of integral equations and their systems. The 
applied significance is related ot the fact that the 
obtained results can serve as good reference in con-
structing approximation models to solve the interior 
problem for the structure under consideration, as 
well as for structures with similar geometry.
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Аннотация – Статья посвящена анализу электродинамических свойств эллиптической рамочной структуры. С учетом 
двойной симметрии внутренняя задача для рассматриваемой структуры в рамках тонкопроволочного приближения 
сведена к четырем интегральным уравнениям Фредгольма первого рода, записанным относительно независимых 
токовых функций. Проведено исследование спектральных характеристик интегральных операторов соответствующих 
интегральных уравнений для различных значений электрической длины и коэффициента эллиптичности рамки. 
Показано, что собственные функции интегральных операторов при близких значениях указанных параметров имеют 
высокую степень корреляции и по форме близки к тригонометрическим функциям. Выявлены особенности частотной 
зависимости собственных значений интегральных операторов. Сделан вывод о резонансном характере этих зависимостей, 
что делает эллиптическую рамочную структуру во многом схожей с рассмотренными авторами ранее трубчатым 
вибратором и сферической спиральной частицей. Результаты, представленные в статье, способствуют формированию 
углубленного понимания процессов, протекающих в рассматриваемой структуре, а также служат ориентиром при 
построении аппроксимационных моделей решения внутренней задачи.

Ключевые слова – эллиптическая рамочная структура; рамочная антенна; интегральное представление 
электромагнитного поля; распределение тока; интегральное уравнение; собственные функции; собственные значения.
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