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Abstract - The article is devoted to numerical methods for solving the problem of diffraction of electromagnetic waves by
conducting bodies. Two approaches to solving the problem are considered. The first one is based on the use of the thin-wire
integral representation of the electromagnetic field (TP-method) for a grid model of the body surface. The second approach
is associated with the use of the basis functions of Rao-Wilton-Glisson when solving a vector integral equation formulated
with respect to the electric current density on the body surface (RWG-method). The diffraction of a plane linearly polarized
electromagnetic wave by a sphere is considered as a test problem. The results of calculations of the normalized diagrams of
the scattered field are presented. It is shown that there are practically no visual differences for the results obtained using both
approaches. At the same time, it should be noted that the TP method is much simpler in numerical implementation than the

RWG method.
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Introduction

The term “diffraction” literally means “deflection.”
In electrodynamics, in the broad sense of the word,
diffraction is usually understood as all phenomena
associated with the propagation of electromagnetic
fields created by coherent sources in the presence of
obstacles of various electrical sizes [1]. Because of the
phenomenon of diffraction, electromagnetic waves
can enter the region of a geometric shadow, envelop
obstacles, travel along a surface, and penetrate small
holes in a screen.

Interest in such problems arose a long time ago.
The traditional theory of diffraction was developed
over several centuries by H. Huygens, O. Fresnel,
G. Helmholtz, and G.R. Kirchhoff and other authors.
To understand wave processes and calculate diffrac-
tion fields, Huygens’ principle is crucial, according to
which the propagation of waves is caused by the ac-
tion of secondary sources. Fresnel refined Huygens’
principle by considering the interference of spheri-
cal waves emitted by secondary sources. Further re-
finement of the Huygens-Fresnel principle belongs
to Kirchhoff, who gave a strict formulation based on
the Helmholtz equation. When the body on which the
electromagnetic wave is incident has infinitely high
conductivity, a rigorous solution to the diffraction
problem consists of reducing it to a vector integral
equation (IE) on the body surface. This approach is
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often called the surface current method. It has two
stages. Stage 1 involves calculating the distribution
of surface currents (an interior problem of electro-
dynamics), and stage 2 involves calculating the scat-
tering field created by surface currents. Solving the
interior task is a rather serious problem, in the most
thorough case requiring research into the IE solvabil-
ity, the correct choice of spaces for solutions, etc. [2].

In modern conditions, computer-aided design sys-
tems such as CST STUDIO, HFSS, and FEKO are
used to solve diffraction problems. They apply differ-
ent methods, including the method of moments [3].
Using this method, the original vector IE is reduced
to a SLAE (system of linear algebraic equations) with
respect to the unknown coefficients of the expan-
sion of the current function in a series according to
a preselected system of basis functions. In the most
popular option today, the surface of the body under-
goes a triangulation procedure, enabling the use of
Rao-Wilton-Glisson functions as basis functions [4].
Determining the coefficients of the SLAE matrix in
this case generally involves calculating the integrals
of the fourth degree of multiplicity in the local coor-
dinates of the triangles, which is a computationally
rather complex task. The diagonal elements of the
SLAE matrix are specially calculated.

The solution to a diffraction problem can be con-
siderably simplified using a thin-wire integral repre-
sentation of the electromagnetic field (EMF IR) [5].
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Fig. 1. General statement of the problem
Puc. 1. O61mas mocTaHoBKa 3a1a4u

In this case, the previously performed triangulation
should be used, replacing the faces of the triangles
with thin conductors of a small electrical radius. For
the small electrical dimensions of the triangles, the
grid of conductors will be equivalent to a solid metal
surface, because of which we can expect a good ap-
proximation of the solution to the original diffraction
problem. The interior problem in this case, using
the collocation method, is also reduced to a SLAE,
whose matrix elements are determined by calculat-
ing rather simple one-dimensional integrals. Nota-
bly, grid structures represent a separate class of elec-
trodynamic structures, and solving their diffraction
and radiation problems is of crucial theoretical and
applied importance. Earlier in [6; 7], it was shown
that with the use of a thin-wire EMF IR it is possible
to solve successfully diffraction problems on some
classes of metastructures [8; 9].

In this article, the problem of the diffraction of a
plane electromagnetic wave on a sphere is consid-
ered a test problem. A comparison was made between
the results obtained using the RWG basis and those
obtained using a thin-wire EMF IR. The influence
of grid size on the scattering characteristics of the

structure is also considered.

1. Basic calculation equations

In the most general form, the EMF at the observa-
tion point r created by a perfectly conducting body
V bounded by a surface S (Fig. 1) and located in a ho-
mogeneous isotropic medium can be described by an

integral representation of the following form [1]:

_ Wm 2 N e
Br) == [ (k% +Vv:)G)ir)dr; "
H(r) = Vx SGJ(r')dr'.

Here, W, and k are the wave resistance and wave
number of the medium, respectively; J(r') is the sur-
face density of the electric current at S>r'; r' is the
source point; V is the nabla applied to the observa-
tion point, and

—ikR
G=GR)=—L°

"0 R R=[r—r'| (2)
is Green’s function for free space. Solving the inte-
rior problem involves determining the function J for
a given distribution of the external sources of elec-
tric field E®*Y on S. In the general case, the interior
problem can be described using the boundary condi-
tion for a perfectly conducting surface S:

vr'eS: T (EY 4 E)=0, (3)
where ¢t is the vector tangent to S at point r'.

The interior problem can be solved analytically
only in some of the simplest cases; therefore, in prac-
tice, the method of moments is used [3], within which
the unknown current function J(r) is represented as
a finite series:

N

Jr)=> a.f (r). 4)

n=1

Here, f (r) are the known vector basis functions, and
a, is the unknown coefficient to be determined in the
process of solving the interior problem.

After substituting Eq. (4) into Eq. (1), scalar multi-
plication of both parts of f_(r), transferring the op-
eration of field divergence from the observation point
to the source point, and integration over the source
points, we obtain the formulation of the interior
problem as a SLAE for a,:

N
> 20y =by, m=1..N. (5)
Here,
= . "2 —
= [, js(fm(r> £, (r)k
~[V-£, (0IIV'-£, (r)]) Gdr'dr; 6)

m

4%
by, =~ J.Sfm(r)E(eXt)(r)dr

are the matrix coefficients and coefficients of the
right side of the SLAE, respectively; the operator V'
is applied to the source point. As a rule, in modern
computer-aided engineering (CAD) systems, the sur-
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face S is first triangulated, and then the Rao-Wilton-
Glisson (RWG) functions are used as basis functions,
the carrier of which is a pair of triangular elements
having a common face. Note that determining the el-
ements z,, ,
tational procedure.

in this case is a rather complex compu-

An alternative approach to solving the problem
of diffraction on a conducting body V can be imple-
mented using thin-wire EMF IR. For this purpose,
the previously obtained triangulation of the original
surface S, which forms Ny of the faces, must be used.
Each face can be replaced with a thin conductor L;
of radius € < A, having a length corresponding to its
designation (j=1...Np). Under the influence of an
external field, a distribution of the total current I]. ().
will arise on each conductor. An EMF created by such
a structure can be expressed as [5]:

NB
Fir=Y [ LK w0, F=EH; 7
j=1 Jj

where Ij(l') is the distribution of the total current
along the generatrix L;,

W ~
K(E)(r, r)= _—I’C"|:k21'G(r, r')dl —%((r —r")B(r, r'))};

l

A

K(H)(r, r)=1x(r—r")B(r,r').

®)

are EMF IR kernels; r':rj(l') is the vector equation
of the generatrix Lj, 1'=1;()= dr;(I)/dl'is the unit
tangent vector defined at point I on the generatrix
Lj ,and
po 100 _iR+1,

R OR R2

is the derivative of Green’s function with respect
to R

R=y[|r—r'[* + €
which is the distance regularized by the radius of the
conductors m.

Let us present each conductor as a collection of
D + 1 nodes:

(D) .
Lj S SRTLITTEEN (F WO

The equation for the segment connecting neigh-

boring nodes with numbers m and m + 1 can be pre-
sented in the following form:

o= Ll [0 12,8, /2]

i,m im ' im

Here, o =(ri,m +ri,m+])/2 is the center of the seg-

me1 " Eim | is the segment length; and

ment; A; = |1
li,m = (ri,erl —ri’m)/ Ai,m is the unit tangent vector on

the segment. The current distribution on each seg-

ment at A = can be considered uniform, I, (I)=1; .
After segmenting all L;, we can enter an end-to-end
index k for the segments and rewrite Eq. (7) in the fol-

lowing form:

N
F(r)= I, LkK(F e, e )l F=E,H; 9)
k=1

Applying a boundary condition in the form of Eq. (3)
at the center of each segment, we obtain a SLAE for
calculating the unknown current amplitudes I;:

N

S
D zpilk = E p=1...N, (10)
k=1
where
i wE S L gy ar
2, =1, IAkK (x5 ()L
W (11)
__my glext) *
Ek = lk p E (rp).

A correct and stable solution of the SLAE within the
framework of the collocation method is achieved
when the following conditions are met:

2¢ < A<12¢ (12)

for any segment [10]. Without a doubt, the solution
of Eq. (11) is much simpler numerically than the so-
lution of Eq. (6). The results obtained using the two
described methods are interesting to compare.

2. Re-emitting structures under study

We consider three spherical objects (Fig. 2) cen-
tered at the origin O of the Cartesian coordinate sys-
tem as test structures. These objects are formed by
thin metal conductors L. of radius m = A. The radius
of the sphere described around the objects under
consideration is denoted as r. The structures will be
excited by a plane electromagnetic wave (PEW) prop-
agating along the Ox axis and polarized toward the
Oz axis, having unit amplitude and zero initial phase.
The set of conductors L. forms a grid surface with tri-
angular cells that slightly differ from an equilateral
triangle, the length of which is denoted as d. It is as-
sumed that each conductor can be represented as D
segments s of equal length A = A, and the distribution
of the total current on each of them can be consid-
ered uniform (Vs:I(l)=1, where [ is the longitudinal
coordinate on s). Thus, from the set of conductors,
we proceed to a set of segments in which an EMF is
described by Eq. (9), and the solution to the interior
problem is described by Eq. (11).

When d = A, the grid under consideration becomes
similar to a solid metal surface formed by triangular
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Fig. 2. Geometry of the studied reradiating structures
Puc. 2. TeomeTpusa uccnefyeMpIX IepeU3IydalolluX CTPYKTYp

Table. Numerical simulation parameters
Ta6nuua. [TapaMeTpsl YUCTEHHOIO MOAETMPOBAHUS

Structure No. D Alr elr N,
1 1 0,075 0,01 7680
2 4 0,075 0,01 1920
3 8 0,073 0,01 960
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Fig. 3. Comparison of normalized DR in the meridian and azimuth planes: a - TP method; b - FEM; RWG method; 1 - r=0,25};
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Fig. 4. Normalized meridian (left) and azimuthal (right) RPs for structures 1-3 (curve number corresponds to structure number):
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elements T; on which density distributions of equiva-
lent surface electric currents can be introduced J (r);
(reTy). In this case, the RWG basis can be used to
represent surface currents, the EMF of the structure
is determined by Eq. (1), and the solution to the inte-
rior problem is determined by Eq. (6).

Notably, the work of J. Mee [11] presents a rigor-
ous solution to the problem of PEW diffraction on a
homogeneous sphere of arbitrary diameter and com-
position located in a homogeneous medium.

3. Results of the numerical simulation

For convenience, the parameters of numerical
modeling may be presented as a table (see Table).

Figure 3 shows a comparison of the results of calcu-
lating normalized scattering patterns in the meridian
(¢ =0) and azimuthal planes for structure 1 at differ-
ent ratios of r/ . Type a and b graphs were obtained
on the basis of a thin-wire EMF IR (TP method) and
a solution using equivalent currents presented in the
RWG basis (RWG method), respectively. According to
the figures presented, the results obtained have prac-
tically no visual differences. Minor differences can be
noticed only at the maximum ratio r / A for the val-
ues B and ¢ corresponding to the side lobes of the
radiation.

Figure 4 presents a comparison of the results of
calculating normalized scattering diagrams in the
meridian and azimuthal planes for structures 1-3 ob-
tained at different ratios of r/ A. The presented results
enable us to evaluate the influence of cell size on the
radiation characteristics of the structure. The figure
reveals that the greatest differences are noted in the
meridian plane in directions other than the direction
of the main lobe. Moreover, as the cell size increases,
the number of lateral radiation lobes increases, and as
the frequency increases, their distribution becomes
asymmetrical, which is associated with errors in the
geometry of the structures under consideration.

Conclusion

This article compares two approaches to solving
the problem of diffraction on conducting bodies. Ap-
proach 1 involves replacing the surface of the body
with a set of conductors forming a triangular grid,
the cell size of which is much smaller than the length
of the incident wave. In this case, the grid becomes
equivalent to a continuous metal surface. The solu-
tion to the interior problem is reduced to determin-
ing the amplitudes of the total currents on short seg-
ments forming conductors (TP method).

In approach 2, the surface is replaced by a set of
triangular elements that are carriers of the surface
density of the electric current. The solution to the
interior problem is reduced to calculating the cur-
rent distributions on triangular elements using ba-
sic RWG functions (RWG method). This approach is
widely used as the basis of modern CAD systems.

The results of calculations of scattering fields on
structure 1 confirmed the adequacy of the TP method
for solving the diffraction problem, as there are prac-
tically no visual differences for the given scattering
diagrams. Note that the numerical implementation of
the TP method is much simpler in terms of solving
the interior and exterior problems of electrodynam-
ics. Determining the elements of the moment matrix
in this case is reduced to calculating single integrals,
whereas within the RWG method, integrals of the
fourth degree of multiplicity must be calculated. The
number of basis functions within both methods is
comparable.

The TP method can also be used directly to calcu-
late the grid structures. The corresponding results
are presented in the article. As the size of the grid
cell increases, the characteristics of the scattering
field change, the main lobe is deformed, and addi-
tional lobes appear, the number of which increases
with frequency.
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Annomayug - CrTaTbs IOCBsIIEHa YHUCIEHHBIM METOJAM peILIeHMs 3afadyd AUPpPaKUMU 3IeKTPOMATHUTHBIX BOJMH Ha
MpPOBOJSIINX Telax. PaccMOTpeHbI ABa MOAX0/AA K PelleHUIo 3agayuu. [lepBblil OCHOBAH Ha MCIIOIb30BAHUU TOHKOMPOBOJIOYHOIO
HHTEeTPabHOTO [PefCTaBIeHus 37IeKTpoMarHuTHOro nojst (TII-MeTox) AJIsi CETOYHOM MOMIeNTH TIOBEPXHOCTH Tella. Bropoii moaxon,
CBsI3aH C MCIOIb30BaHWEM 6a3MCHBIX GpyHKIMH Pao - YuntoHna - [7iccoHa NpH pellleHUU BEKTOPHOTO HHTETPabHOTO YpaBHEHHU,
cHOpMYIHPOBAHHOIO OTHOCHTENIBHO INIOTHOCTH 3JIEKTPUYECKOr0O TOKA Ha oBepxHOCTH Tenia (RWG-meTton). B kauecTBe TecTOBOM
3aa4d paccMoTpeHa AUQPaKUMs [UIOCKOHM JIMHEHHO MOJISIPU30BAHHON 3JIEKTPOMArHUTHOW BONHBEI Ha cdepe. [puBegeHsl
pe3y/IbTaThl pacyeTOB HOPMHUPOBAHHBIX JUATPAMM PacCessHHOTO mos. [IokazaHo, 4TO /st pe3y/IbTaTOB, TOTY4YeHHBIX C TOMOLIBIO
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060HMX ITOIXO/[J0B, BU3ya/bHbIE OTINYH IPAKTUIECKH OTCYTCTBYIOT. [Ipy aTOM CllefiyeT oTMeTUTh, 4To TII-MeToA ropasao npoiie
B YHMCJIEHHOM peanusanuu, yeM RWG-merof.

Kniouegvle cnosa - WHTerpajlbHble IpeACTaBIeHUs] 3JIEKTPOMATHUTHOIO IIOJISl; METOA MOMEHTOB; TOHKOIPOBOJIOYHOE
npubnkenne; [UpPaKLUs 3IeKTPOMATHUTHBIX BOJH; CETOYHBIE CTPYKTYPBI.
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