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Singular integral equation for an electric dipole
taking into account the finite metal
conductivity from which it is made

Dmitriy S. Klyuev ®, Yulia V. Sokolova

Povolzhskiy State University of Telecommunications and Informatics
23, L. Tolstoy Street,
Samara, 443010, Russia

Abstract - A singular integral equation for an electric dipole has been obtained, which makes it possible to take into account
the finite conductivity of the metal from which it is made. The derivation of the singular integral equation is based on the
application of the Green’s function for free space, written in a cylindrical coordinate system, taking into account the absence of
the dependence of the field on the azimuthal coordinate, on a point source located on the surface of an electric dipole. Methods
for its solution are proposed. In contrast to the well-known mathematical models of an electric dipole, built in the approximation
of an ideal conductor, the use of the singular integral equation obtained in this work makes it possible to take into account heat

losses and calculate the efficiency.
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Introduction

The problem of determining electromagnetic
fields (EMFs) directly near radio devices (from the
standpoint of antenna theory, in the near-field of
an antenna) is associated with research in the fields
of electromagnetic compatibility, electromagnetic
ecology, and antenna measurements. Typically, the
electromagnetic radiation field of an electric dipole
(Fig. 1) is calculated using the z-component of the
vector electrodynamic potential A7, determined
through the z-component of the current on the dipole
I, (z) =2man, (z) (n, is the z-component of the sur-
face current density on the dipole, and a is the radius
of the dipole) [1-3]:
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where R= (z—z’) +p2; k = o\/egyup,, is the wave

number; o is the cyclic frequency; g, is the electri-
cal constant, p, is the magnetic constant; £ and p
are the dielectric and magnetic permeability of the
environment surrounding the dipole, respectively,
and 2l is the dipole length. Obviously, G(p,z—z') is
the Green’s function of free space from a point source
placed at a point (p =0,z= z'), i.e.,, on a line p=0.
The unknown current distribution I, (z) along the
dipole is usually determined from Pocklington’s in-

klyuevd@yandex.ru (Dmitriy S. Klyuev)

tegral equation or from Hallen’s integral equation.
Knowing the function I, (z), by the usual differen-
tiation of Eq. (1) with respect to coordinates p and z
[1-3], equations can be easily obtained for the elec-
tromagnetic field components of the dipole radia-
tion at any point in space. The numerical values of
the fields E and H so obtained in the near zone of
the electric dipole must be tested for reliability for
at least two reasons. First, determining the unknown
current I, (z) from the dipole from Pocklington’s and
Hallen’s integral equations (Fredholm integral equa-
tions of the first kind) leads to an incorrectly posed
problem [4]. Second, the use of the Green’s function
of Eq. (2) when calculating the field leads to a non-
self-consistent formulation of the problem since in
this case there is no limiting transition from the field
in the near zone to the field (current) on the dipole
surface. Third, these equations neglect the finite con-
ductivity of the dipole arms.

In [5-8], the method of singular integral equations
(SIEs) was developed, which allows the problem of
calculating the current distribution over an electric
dipole to be reduced to the Fredholm integral equa-
tion of the second kind. This approach enables us to
take a mathematically correct approach to determin-
ing the distribution of surface current density on a di-
pole. However, the SIE obtained in these studies has
the same drawback: It neglects the final conductivity
of the dipole arms.
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This work is a generalization of works [5-8] in the
sense that an SIE has been obtained for electric di-
poles with finite conductivity of the arms, and there-
fore it enables the consideration of heat losses.

1. Statement of the problem.
Singular integral representation
of the electromagnetic field

We consider the electromagnetic field of an elec-
tric dipole [6; 7] of length 2[ and radius a, excited in
the discontinuity region (z € [lo -b,l, +b]) by a high-
frequency generator (Fig. 1 presents the dipole geom-
etry), independent of the angle ¢. Assuming no vari-
ation in the field along the coordinate @, Maxwell’s
equations break down into two independent systems
with respect to the components {Ep, EZ,H(p} and
{E(p, H,, Hz}. Obviously, a consideration of the ra-
diation fields of dipoles of relatively small radius
(a<7u) must be based on the system of Maxwell’s
equations, which describes the behavior of the com-
,» and H,.
pole surface, the surface current density n, only has

ponents Ej, E In this case, on the di-
a longitudinal component.

To obtain the singular integral presentation (SIP)
of the electromagnetic field of a dipole, the starting
point is Eq. (1) for the z-component of the vector elec-
trodynamic potential for electric current A7 through
the z-component of the surface current density 1, on
the dipole but with a different Green’s function [9]:

G(pz-2) == [ e Mg (hp)ah, 3
i
where -~
Jo (—ipv HY (-iav) when p<a,
g(h, p) _]70 ( ) ( )

]0( zav) m(—ipv) when p>a.

where J;(x) is a Bessel function of the first kind of
zero order, Hé2)(x) is a Hankel function of the second

kind of zero order, and v = ,[hz —K2.

Eg. (3) defines the Green’s function of free space,
presented in a cylindrical coordinate system, consid-
ering the absence of the dependence of the field on
the coordinate ¢ of a point source located at a point
(p =qa,z= z’), i.e., on the electric dipole surface. No-
tably, the choice of Green’s function G(p,z—z’) in
Eq. (1) in the form of Eq. (3) corresponds to the physi-
cal model of a tubular dipole, according to which the
dipole is represented as two hollow tubes of finite
dimensions [6; 7]. The components of the electromag-
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Fig. 1. Geometry of the electric vibrator
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netic field of the dipole radiation are determined us-
ing the following equations:
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Substituting Eq. (1) with the Green’s function of
Eq. (3) into Eq. (4) leads to the following integral rep-
resentations of the electromagnetic field components
of the dipole at any point in space through the cur-
rent I, (z) on its surface:

ioeg,
E: (p,z) ioee, II 1)(p,z z )dz )
I I G(l
o p,z z)dz
where
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(1) _ 1 [ ih(e2)
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c((p):g_ (=g, (h,p)dh

In ratios of Eq. (6)
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It can be shown that when p =a,
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Thus, improper integrals of Eq. (6) in integral rep-
resentations of Eq. (5) do not converge, and simple
truncation of their infinite limits can lead to incor-
rect physical results. Therefore, direct transition of
Eq. (5) for p—>a to known boundary conditions is
impossible.

Let us highlight the aspects of Eq. (6) explicitly. For
this purpose, we subtract their asymptotic expres-
sions from the integrands g, gp> and g, in Eq. (6)
and proceed from the function I, (z) to its derivative
I, (z)z dI z)/dz in the relations for Ep and E,.
Consequently, we obtain the following SIPs:

Ep (p,z):

l

(z')[G(P (p,z—z')—i—Sl (p,z —z')}dz',

= " z
1(0880 |

E, (p,z)z

L (7)
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H (p,z):
II

defining the field of an electric dipole at any point in

S (p,z - z’)] dz',

o(Pz=2)+

space through functions J, (z) and I, (z), defined on
its surface. Green’s functions G(p and G, are conver-

gent integrals:

v? (2)
ag; (h,p) =5=Jo (~iav) Hy (<ipv)-

! sgn(h)e_(p_a)‘h‘ for p>a.

map

Analysis shows that the functions Agz, Ag, at
|h|—>oo decrease no slower than O(h™2). The func-
tions S; and S, at p —a have the following distinct
characteristics:

p—a
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2. Singular integral equation obtained
from the integral representation
of the electromagnetic field

An advantage of the SIPs of Eq. (7) is that they are
valid for any point in space, including the radiating
surface of the dipole itself, p = a. In this case, E, from
the SIP of Eq. (7) can be presented in the following

form:

x j]z (z')M(Z_Z')er_F%j‘%dZ' | (10)
o J

where

M(Z_Z’):%T —ih(z-2)

2
[nav ]0< iav)H(()z)(—iaV)_ngn(h)}dh'

If we use the boundary condition for an ideal con-
ductor on the dipole surface p=a, then
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0 where ze[—l,lo—
E =

z

b]U[ly+b,1],

S ~b,ly+b],

h where ze [lo

where ES*' is the z-component of the external elec-
tric field in the dipole gap, and the SIP of Eq. (10)
passes into the known SIE [5-8]. However, this equa-
tion neglects heat losses in the dipole arms because
they are considered perfectly conductive, i.e., their
conductivity is infinite. In real dipoles, the electrical
conductivity is finite; therefore, the current flowing
through them is generally distributed over the entire
cross section of the conductor, but the main part of
it will be concentrated in the skin layer. Because the
skin layer is very thin at high frequencies, the real
volume current density is replaced by an equivalent
surface current density [11]. In this case, on the dipole
arms, the z-component of the electric field strength
will no longer be equal to zero but will satisfy
the Leontovich-Schukin boundary conditions [11]

Zgn 1 (z)
where ze [—l,l0 —b]u[lo +b,l},
~b,l,+b].

E =

z

(11)

—EZeXt where ze[lo

where 134 (z) is the z-component of the equivalent
surface current density; and Zg is the surface resist-
ance of the dipole arms, which is equal to [11]
P ky Jo (kpa)
S . ]1 (k a)’
p

where

L [oppeo
K :(1_1)\11370’

c is the specific conductivity of the dipole arms; J,,
J, are Bessel functions of the first kind of zero and
first orders, respectively; and Hp is the relative mag-
netic permeability of the dipole arms.

The dipole current is related to the equivalent sur-

face current density through the equation

I, (z) = 2man; 4 (z),
so the boundary conditions of Eq. (11) can be rewrit-
ten as follows:

Z
S
—1
2ma * (Z)
where ze [—l, ly —b] u[lo +b,lJ,
~E* where ze [lo -b,1, +b].
By substituting the boundary conditions of Eq. (11)
into the SIP of Eq. (10), we obtain a SIE similar to that

obtained in [5-8] but which considers the finite con-

ductivity of the dipole arms and therefore heat losses.

l '

J z

lJ‘ Z( ’) dZ’ _
T Z—2Z

- (12)

= i4naneeyE, I I, )dz’.
As is seen, in the case of an ideal conductor, the SIE
of Eq. (12) transforms into the SIE obtained in [5-8].
To solve the SIE of Eq. (12), we apply the inversion
equation of the Cauchy-type integral to solve an in-
terval that is unbounded at the ends [—l,l]

1 1
]Z(Z)_; 2 _ 2 *

dz+

IJ-—Z

X —i4nawgao
7' —z

+ I ,_Z I(z')dz' - (13)
72—z
l,+b
l,+b
?-7
- ES(2')dz' |+
-[ Z'-z ( ) ‘
I,-b
-z

—J, (z")M(z'—z")dz'dz" .

Equation (13) can be solved, for example, using the
method of moments. To this end, unknown functions
I, (z) and J, (z) must be represented as series expan-
sions in Chebyshev polynomials of the first kind U,
and the second kind T, .

z)=2 z/l z/l

Z

z/l

where A are unknown coefficients to be determined.

n

Other methods for solving such equations are de-
scribed in detail in [11].

Conclusion

Most existing mathematical models of an electric
dipole are created in the approximation of an ideal
conductor and therefore do not allow considering
heat losses, which have a substantial impact on its
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efficiency. For the antenna under study, the internal
analysis problem must be solved in a strict electrody-
namic formulation, i.e., determine the surface density
of the electric current on a metal surface, consider-
ing its finite conductivity. Currently, a very effective
mathematical apparatus, the SIE apparatus, enables
the correct mathematical solution of such problems.
In this article, using this apparatus, an SIE for an

electric dipole is obtained, which, unlike the known
ones, enables us to consider the finite conductivity of
the metal it is made of.

The method described in this article can be gen-
eralized (without any particular fundamental dif-
ficulties) to other radiating structures, such as strip
dipoles and loop antennas, for which SIEs were ob-
tained in the ideal conductor approximation.
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CHUHIyIsIpHOE MHTErpAIbHOE YPABHEHHUE /ISl IEKTPUYIECKOTO
BHOpaTOpa C y4€TOM KOHEYHOU MPOBOIUMOCTH
MeTa/lIa, U3 KOTOPOro OH U3rOTOB/IEH

I.C. Knioes

, FO.B. Cokonosa

TTOBOJIKCKHH roCyapCTBEHHBIH YHUBEPCUTET T€IEKOMMYHHKALUH 1 HHPOPMATHKHU
443010, Poccus, r. Camapa,
yn. JI. Toncroro, 23

Annomayus - ITomydeHO CUHTY/ISIPHOE UHTErpalbHOE ypaBHEHHE [Isl JJIEKTPUYECKOTO BUGpaTOpa, MO3BOJISIOLEee YIUTHIBAT
KOHEYHYIO IPOBOJUMOCTD METaJ/Ia, U3 KOTOPOTO OH M3rOTOBJIEH. BBIBO CHHIY/ISIPHOTO MHTErPaIbHOIO YPaBHEHHSI OCHOBAH Ha

npruMeHeHUH $yHKUNUK ['prHa [Isi CBOGOLHOTO MPOCTPAHCTBA, 3aNMCAHHON B LIMIMHAPUYECKOH CUCTEME KOOPAMHAT C YYETOM
OTCYTCTBHSI 3aBUCHUMOCTH IOJIsI OT a3UMYTaJIbHOM KOOPAMHATHI, OT TOUEYHOr0 MCTOYHHKA, PACIOIOKEHHOTO Ha MOBEPXHOCTH
anexkTpuyeckoro Bubpartopa. [IpeyioKeHBI METOAbl €ro peLIeHHs. B OTIHYMe OT H3BECTHBIX MaTeMaTHYECKHX MOAesel

9JIeKTPUYECKOr0 BHOGPATOpA, MOCTPOEHHBIX B NPHOIMKEHHH HA€AIbHOrO IMPOBOAHHKA, IPHMEHEHHE MONYYeHHOrOo B JAHHOM
paboTe CHHTYJSIPHOTO HHTErPaJbHOTO YPABHEHHSI T03BOJISIET yIeCTh TEMIOBbIe MOTepH U paccuutats KITI.
Kniouesvle cnosa - ameKTprudecKUil BUGPATOP; ONIe B GIMKHEH 30He; HEKOPPEKTHAsI MaTeMaTHYecKas 3afada; pyHkuus [puHa;

CHUHTYJISIPHBI€ UHTEr'paJIbHbIE€ YPABHEHHU A; CAMOCOTIIaCOBaHHAA IIOCTAHOBKA 3aJa4U; TEIJIOBbIE IIOTEPU; KOHEYHAs JJIEKTpHUIecKas

nposoauMocTk; KIIII.
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