Актуальность изучения структуры потока при врезном расширении канала вызвана тем, что в инженерной практике очень часто применяются течения в ограниченном пространстве такой конфигурации. Эти потоки характеризуются образованием отрывных течений, или рециркуляционных зон. Широкое распространение ограниченных струй в каналах с врезным расширением обусловлено высокими коэффициентами теплообмена и процессов смешения в зоне отрыва. В зависимости от формы, способа подачи струи, наличия спутного потока и других факторов возможны различные карты и режимы течения в канале.

Каналы с врезным расширением в качестве камеры сгорания получили широкое применение как в авиационной, так и в ракетной технике [1, 2].

Общепризнано, что эффективность рабочего процесса существенным образом зависит от структуры течения в камере сгорания. Поэтому экспериментальные или теоретические оценки структуры течения в камере сгорания на стадии ее проектирования являются обязательными. Структурной течения определяются плотность сгорания и количество токсичных выбросов в атмосферу, а также тепловое состояние стенок камеры сгорания. Если характеристики течения заранее известны, то можно оценить наиболее теплонараженные участки, организовать тепловую защиту и тем самым предотвратить возможность прогаров стенок камеры сгорания. Основным методом исследования турбулентного струйного течения в ограниченном пространстве является экспериментальный метод [3].

В соответствии с поставленной задачей по исследованию характеристик течения воздушного потока в камере с врезным расширением были разработаны и изготовлены необходимые экспериментальные установки. Исследования структуры течения в осесимметричной камере с врезным расширением проводились с помощью газодинамической установки, работающей на отсырение. В качестве рабочего тела использовался воздух с температурой 293 К.

Исследование проводилось на двух каналах с геометрическими параметрами: \(r_0 = 0,01 \text{м}, r_k = 0,03 \text{м} \) и \(r_0 = 0,02 \text{м}, r_k = 0,04 \text{м} \), где \(r_0 \) - радиус канала до плоскости врезного расширения; \(r_k \) - радиус канала за плоскостью врезного расширения. Соответственно степень врезного расширения \(\overline{r} = r_k / r_0 \) составляла в первом случае 3, во втором - 2.

Проточная часть экспериментального участка изготовлена из органического стекла. На входе в проточную часть устанавливалась труба с конфузором для обеспечения равномерного профиля средней скорости на срезе сопла. Относительное удлинение канала \(L_k / r_0 \) в первом варианте составляло 26, во втором - 23. Экспериментальный участок снабжался штучерами для координатного механизма с термоанемометрическим датчиком. Конструкция подводящей трубы предусматривала установку турбулизирующих решеток на расстояниях 0,02 и 0,057 м от плоскости врезного расширения.
Замеры перепада давления в экспериментах осуществлялись с помощью водяного микроманометра типа МКВ-250-0,02, а предварительные (для определения знака) - U-образным дифманометром.

Скорость потока воздуха на входе в канал U_0 регулировалась в процессе экспериментов с помощью дроссельной заслонки, установленной на выходном патрубке вентилятора, и измерялась термоанемометром.

Измерение турбулентных характеристик течения в осесимметричном канале производилось с помощью комплекса термоанемометрической аппаратуры DISA - 55М, включающего в себя:

- термоанемометр постоянной температуры 55М01-14;
- линеаризатор 55М25-15;
- цифровой интегрирующий вольтметр средних значений 55М31-16;
- вольтметр среднеквадратичных значений 55М;
- вольтметр В3-6.

Энергетические спектры пульсаций скорости определялись с помощью комплекса аппаратуры:

- анализатора спектра С4-73;
- интегратора многоканального ЯЧС-78;
- блока измерительного ЯЧС-76.

Для измерения скорости в зонах рециркуляции использовался фазоинвертирующий термоанемометр (ФТА), принцип действия которого описан в [3]. ФТА в отличие от обычного термоанемометра позволяет регистрировать реверсивные изменения направления потока.

В экспериментах использовались датчики двух типов. Датчик 1-го типа применялся для измерения характеристик течения во входном сечении, где нет зон возвратных токов. Датчиком 2-го типа измерялись параметры вблизи стенки, а также в плоскости смещения.

Чувствительным элементом этих датчиков являлась золоченная волфрамовая нить диаметром 5 мкм и длиной 1...1,2 мм, изготовленная по «волостановской» технологии. Датчик ФТА состоял из трех параллельных нитей, расположенных на расстоянии 0,2...0,3 мм друг от друга. Боковые нити служили для регистрации направления многочисленного вектора скорости.

Державка вместе с датчиком устанавливалась в координатный механизм, позволяющий перемещать датчик с точностью до 0,1 мм. Калибровка датчика проводилась в диапазоне скоростей 3...55 м/с. Линеаризатор настраивался согласно инструкции таким образом, чтобы на выходе получался сигнал пропорционально скорости потока: $E = CU$.

Во всех испытаниях коэффициент пропорциональности C был выбран равным 10. Калибровка датчиков проводилась через каждые 3...4 часа работы. Перед тарировкой датчики подвергались «старению» в течение 5 час.

Известно [4], что визуализация является самым распространенным способом наблюдения и исследования отрывных течений. Она позволяет получить наглядную качественную картину течения, а также оценить некоторые количественные характеристики: длину зоны рециркуляции, координаты точек отрыва и присоединения потока, границу между внешним потоком и отрывной областью и др.

При исследовании картины течения воздушного потока в модели камеры сгорания с внесенным расширением применялся метод «масляной пленки» [4]. Металлическая пластина толщиной 0,5 мм покрывалась тонким слоем смеси электрографического порошка с вакуумным маслом и устанавливалась в исследуемую модель. При обдуве модели воздушом смесь на пластине под действием сил трения перемещается вдоль поверхности, образуя неравномерную по толщине пленку, отображая особенности течения. Данный метод позволяет непосредственно наблюдать или фотографировать картину течения на пластине. Правильно подобранная смесь не растекается и не искажает «портрет» течения после остановки экспериментальной установки. Этот метод очень нагляден и удобен для исследования многорежимных течений. В этом случае, наблюдая в динамике за пленкой смеси при переходе от одного режима течения на другой, можно увидеть гораздо больше, чем по отдельным фотографиям.

Картина течения при внесенной расширении осесимметричного канала, полученного методом «масляной пленки», показана на рис. 1.
Экспериментальные исследования турбулентных струй в каналах показывают [5], что осредненная и пульсирующая структура течения не зависит от числа Рейнольдса при его значении $Re_0 = 6.6 \cdot 10^3 ... 10^4$. Несмотря на возникающий продольный градиент давления, поперечные профили скорости в канале характеризуются подобием [6, 7].

Подобие профилей скорости в турбулентных струях означает, что профиль скорости может быть выражен в безразмерной форме в виде некоторой универсальной функции. Для струйных течений в каналах в качестве таких универсальных функций целесообразно использовать зависимости вида

\[
\frac{(U - U_d)}{(U_m - U_d)} = f\left(y/\delta\right) \quad \text{и} \quad \frac{(U - U_d)}{(U_m - U_d)} = f\left(y/\delta\right),
\]

где U_m — скорость на оси струи; δ — толщина слоя смещения; y — поперечная координата от оси струи, соответствующая значению скорости $U_c = (U_m - U_d)/2$. Эти функции позволяют описать профили скорости как со спутным, так и встречным движением жидкости на внешней границе слоя смещения. В первом случае скорость U_δ положительна, во втором отрицательна.

Необходимо отметить, что кроме вышеназванных работ известны другие, где указывается, что в отличие от свободных струй профили скорости в струях, распространяющихся в каналах, не являются подобными. Так, в [8] отмечается, что при малых степенях расширения каналов $r_k/r_0 \leq 10$ (осесимметричный канал) и $B_k/b_0 \leq 16$ (плоский канал) подобие профилей скорости не выполняется. Такие противоречивые выводы о подобии профилей скорости могут быть объяснены сложностью измерения скорости, особенно на участках с возвратным течением, а также разными способами обобщения результатов опытов. В частности, в [8] в качестве координаты y_c использовалось расстояние от оси, на котором величина скорости равна $0.5U_m$, а не $(U_m - U_d)/2$, как в [3].

Первоначально были получены профили средней скорости потока U и пульсаций скорости $\varepsilon = \sqrt{\overline{U'^2}}/U_0$ на входе в канал (в плоскости врезанного расширения).

Выведено, что в варианте без турбулинизирующей решётки профиль средней скорости U подобен профилю скорости развивающегося трубного течения, а уровень пульсаций на оси составляет 1%. Максимум ε наблюдается в области возвратного течения при значении $y = 10$ мм.

При установке решётки на расстоянии $l_p = 0.02$ м от плоскости врезанного расширения профиль средней скорости U становится неравномерным и уровень пульсаций скорости на оси увеличивается до 7.5%.

Установлено, что с увеличением параметра l_p до 0.057 м профиль U выравнивается, а уровень пульсаций скорости снижается. Необходимо отметить, что это относится к каналу со степенью врезанного расширения $r = 3$.

Измерения показали, что профили осредненных скоростей U и пульсаций скорости ε в канале со степенью врезанного расширения $r = 2$ имели такую же структуру течения и те же закономерности, что и при $r = 3$.

Затем были получены профили скоростей и пульсаций скоростей в поперечных сечениях по длине канала.

На рис. 2 показано изменение осевой скорости U_m вдоль оси канала с $r = 3$. Видно, что начальный участок, характеризующийся постоянством скорости на оси, практически отсутствует. Скорость на оси, когда
решётка находится ближе к плоскости внезапного расширения, затухает интенсивнее, чем в опытах без решётки при равных прочих условиях.

Рис. 2. Изменение скорости $U_m = U_m / U_0$ на оси канала с $\tau = 3$: 1 — без решётки; 2 — с решёткой на $l_p = 0,020 \, м$, 3 — $l_p = 0,057 \, м$

Влияние начальной турбулентности на изменение ε_m на оси канала показано на рис. 3. Характер изменения ε_m без турбулизующей решётки такой же, как и в свободной струе: пульсации скорости сначала увеличиваются, достигая максимальных значений при $x = 13$, а затем уменьшаются. При установке решётки ε_m сначала уменьшается, а затем возрастает. При этом максимальные значения ε_m наблюдаются на таком же расстоянии от плоскости внезапного расширения, что и без решётки.

Изменения указанных параметров вдоль оси канала с $\tau = 2$ имели аналогичную закономерность.

Анализируя изменение U_m и ε_m вдоль оси канала, можно выделить начальный участок струйного течения. Если принять в конце начального участка $U_m = 0,95$, то в первом случае, когда решётка отсутствует, его длина приблизительно равна $x = 3$, во втором — 2,5.

На рис. 4 и 5 приведено сравнение графиков изменения U_m и ε_m вдоль оси канала со степенью внезапного расширения $\tau = 2$ и $\tau = 3$.

Рис. 4. Влияние Γ на изменение скорости на оси канала: 1 — $\tau = 2$; 2 — $\tau = 3$

Рис. 5. Влияние Γ на изменение ε_m на оси канала:
1 — $\tau = 2$; 2 — $\tau = 3$

Можно отметить, что с уменьшением степени внезапного расширения τ затухание осевой скорости происходит более интенсив
но, что согласуется с известными экспериментальными данными [3].

Было получено, что с увеличением степени взаимного расширения \(r = 2 \) до 3 происходит рост максимального значения \(\varepsilon_m \) от 7 до 13 %.

В [9] показано, что увеличение значения \(r \) с 1,5 до 4,0 сопровождается ростом максимальной величины уровня турбулентности на оси. Дальнейшее увеличение параметра \(r \) с 4,0 до 9,1 приводит к снижению уровня турбулентности на оси канала. Во многих практических задачах важно знать величину скорости возвратного течения, развивающегося от точки присоединения потока под действием продольного градиента давления. В настоящее время имеются довольно противоречивые сведения о величине этой скорости. По некоторым данным, она близка к нулю, а рециркуляционная зона в этом случае часто называется застойной. По другим данным, эта скорость может достигать 20 ... 40% от начальной скорости основного потока. Такое противоречие можно объяснить тем, что в известных экспериментах использовались каналы с различной степенью взаимного расширения \(r \). Характер изменения скорости возвратного течения \(\tilde{U}_s \), полученный в настоящей работе, показан на рис. 6. Для канала со степенью взаимного расширения \(r = 2 \) максимальное значение \(\tilde{U}_s \) от средней скорости \(\bar{U}_0 \) в варианте без решётки составляет 8,4 %, с решёtkой – 10,5 %.

В обоих случаях, как для \(r = 2 \), так и \(r = 3 \), скорость возвратного течения меняет знак (направление). При обобщении данных, представленных в координатах \(\tilde{U}_s = f(x) = f(x/r_p - r_o) \), было получено, что зона рециркуляции для обоих вариантов лежит в диапазоне \(x = 8,5...9,5 \).

В работе были проведены измерения коэффициента давления по длине канала со степенью взаимного расширения \(r = 3 \). Получено, что до серединь зоны рециркуляции давление остается практически постоянным, а затем возрастает. Причем в опытных турбулизирующих решётками это происходит быстрее.

Изменение \(\tilde{U}_{12} \) и \(\Gamma_{12} \) на оси канала с \(r = 3 \) представлено на рис. 7 и 8.

Выше было отмечено, что развитие струй в каналах с взаимным расширением площади проходного сечения сопровождается возникновением вблизи стенок зоны обратных токов. Для расчета такого рода течений, как ламинарных, так и турбулентных, в общем случае должны использоваться эллиптические уравнения в частных производных: уравнения Навье-Стокса или Рейнольдса, дополненные уравнениями неразрываемности и энергии. Решение этих уравнений является довольно сложной задачей, но даже тогда такое решение возможно, не всегда удается получить удовлетворительное согласование результатов расчета с экспериментами [10].
В связи с этим представляется целесообразным использовать во многих практических задачах более простые методы, основанные на решении уравнений пограничного слоя [3].

![Diagram](image_url)

Рис. 8. Изменение поперечной пульсационной составляющей скорости $\frac{V^2}{U_0}$ на оси канала: 1 — без решётки; 2 — с решёткой на $l_p = 0,057 m$

Система используемых уравнений в зависимости от рассматриваемой задачи включает соответствующие интегральные соотношения сохранения расхода, количества движения, энергии или вещества; выражения для профилей скорости, температуры или концентрации в поперечных сечениях канала; одно или два дифференциальных уравнений пограничного слоя, описывающих изменение скорости, температуры или концентрации на оси канала.

Важным свойством используемого профиля скорости является то, что он описывает струйные течения как со спутным, так и встречным или возвратным течением на границе струи.

Для описания турбулентного переноса применяются простейшие градиентные модели турбулентности, использующие понятие турбулентной вязкости $\nu_t = -\nabla V / \frac{\partial U}{\partial y}$. Использование градиентных моделей турбулентности, основанных на гипотезе Буссинеска, представляется более обоснованным для расчета струй в каналах, чем для свободных струй. Это связано с тем, что струя, вдуваемая в канал, в отличие от свободной затопленной струи взаимодействует с турбулизированной средой. Последнее исключает явление перемежаемости струи и ослабляет эффекты, связанные с возникновением крупномасштабных вихревых структур, которые, как известно, влияют на турбулентный перенос в струйных течениях и не могут быть описаны градиентной моделью.

В рамках предлагаемого метода представляется возможным детально рассчитать процесс трения и тепломассобмена в пристеночном пограничном слое по известным параметрам струйного течения.

Расчетная схема, которая использовалась для расчета течения в канале с внезапным расширением, представлена на рис. 9.

Расчет был произведен на основе методики, изложенной в [3], при следующих допущениях:

1. Канал считается достаточно длинным, в этом случае поперечный градиент давления невелик $(\frac{dp}{dy})(\frac{dp}{dx} + \frac{dp}{dy} = 0)$, а поперечные градиенты скорости намного превышают продольные $(\frac{dU}{dy})\frac{dU}{dx}$. Таким образом, приближение пограничного слоя для таких течений вполне допустимо.

![Diagram](image_url)

Рис. 9. Расчетная схема течения в канале с внезапным расширением
2. Турбулентная вязкость ν_f изменяется по длине канала, оставаясь постоянной в поперечном сечении. На основе этого допущения используем формулу Прандтля в одномерной постановке: $\nu_f = \frac{\chi \delta}{U_{\text{max}} - U_{\text{min}}}$.

Для нашего случая будем иметь $\nu_f = \frac{\chi \delta (U_m - U)}{U_m}$, где χ - эмпирическая константа, значение которой для свободных струй можно принять равным 0,01 [3].

3. Профили скорости в безразмерном виде аппроксимированы полиномом четвертой степени и представлены как $(U - U\delta)/(U_m - U\delta) = 1 - 6\eta^2 + 8\eta^3 - 3\eta^4$, где $\eta = y/\delta$ (δ - координата границы струи).

4. В качестве замыкающего уравнения использовали уравнение Бернулли в дифференциальной форме $\rho \frac{dp}{dx} = \rho U \frac{dU}{dx}$, записанное для течения вне слоя смешения. Так, для возвратного течения получим $\rho U\delta \cdot \frac{dU}{dx} + \frac{dp}{dx} = 0$, а для ядра потока $\rho U_m \cdot \frac{dU}{dx} + \frac{dp}{dx} = 0$, полагая, что в этих областях течение потенциальное.

Таким образом, в общем случае решалась система уравнений сохранения расхода количества движения и уравнения Бернулли. При записи уравнений была использована гипотеза Буссинеска: $\tau = \rho (\nu_f + v) \frac{dU}{dy}$, где ν_f; v - турбулентная и кинематическая вязкость соответственно. На основании записанной системы уравнений была получена система нелинейных алгебраических и одного дифференциального уравнений, которая решалась методом Эйлера, дающего приемлемую точность при правильно выбранном шаге интегрирования. В итоге вместо дифференциальных уравнений в частных производных решились интегральные соотношения, полученные на их базе.

Алгоритм расчёта был выбран следующий: расчёт начального участка, расчёт зоны отрыва, расчёт зоны присоединения и дальнейшее развития потока. Выход из программы осуществлялся по достижении либо заданной длины, либо среднерасходной скорости. Возможны и другие варианты расчётной схемы течения в зависимости от соотношения r_K/r_0.

Анализ, а также сравнение расчётных и экспериментальных данных проводились по трём основным параметрам течения: скорости на оси канала U_m, скорости возвратного течения U_δ и коэффициента давления c_p. Возможен также сравнительный анализ координат линии нулевых скоростей, а также границы струйной части течения.

Расчёт был проведен в нескольких вариантах, которые отличались длиной начального участка X_m и также значениями константы χ в принятой модели турбулентности ($X_m = 9,5\chi = 0,01; x_f = 3.0\chi = 0,01$).

Наилучшее совпадение расчётных и экспериментальных данных получено в первом варианте с относительной длиной начального участка $X_m = 9,5$ и значением константы $\chi = 0,01$, на котором и был остановлен наш выбор.

На рис. 10 построены графики изменения скорости на оси канала в относительных координатах: $\overline{U}_m = U_m/U_0$ и $x = x/r_0$.

![Рис. 10. Изменение скорости $\overline{U}_m = U_m/U_0$ на оси канала $r = 3$.
линия – расчетные точки – эксперимент](image)

Видно, что \overline{U}_m удовлетворительно совпадает с расчетом лишь в области присоединения и дальнейшего развития течения (рис. 9, области CD и DE). Однако уровень \overline{U}_m можно оценить с достаточною степенью точности. Необходимо также отметить, что в нашем случае начальный участок приближительно совпадает по длине с областью отрыва течения (на рис. 9, области AB и BC соответственно).
На рис. 11 показано изменение скорости возвратного течения U_d. Расчётные значения скорости возвратного течения U_d, удовлетворительно согласуются с экспериментальными данными. Погрешность в определении максимума скорости из эксперимента определялась сеткой замеров, шаг которой был не менее 30 мм, а в расчётах – относительным шагом по предельной координате Δx. Как видно из рис. 11, расчёт позволяет приблизительно оценить длину зоны возвратных токов.

В программе расчёта предусмотрена не-назависимость шага печати результатов расчёта от шага, с которым производился сам расчёт. Это позволяет рассчитать течение со сколь угодно малым шагом Δx (для уменьшения погрешности по Эйлеру при этом, конечно, увеличивается время расчёта), а вывод информации осуществлять в объёме, достаточном и удобном для дальнейшей оценки и анализа полученных результатов.

Изменение коэффициента давления c_p по длине канала представлено на рис. 12. Согласование экспериментальных и расчётных данных относительно распределения статического давления (коэффициента восстановления давления c_p) вдоль канала также вполне удовлетворительное.

Таким образом, удовлетворительное соответствие расчётных значений и экспериментальных данных трёх основных параметров течения в канале больного удлинения со степенью внезапного расширения $\beta \leq 3$ говорит о правомерности использования данного метода расчета в изотермических условиях.

Интегральный метод может быть применен для расчёта турбулентных струй переменного состава. Так, если воспользоваться аналогией процессов переноса тепла и массы, то не представляет особой трудности использовать описанный выше метод для расчёта изотермической турбулентной струи в спутном потоке газа другого состава.

Библиографический список

7. Эль-Тахер Р.М. Автомодельность течения в пристеночных струях с протоком //
An experimental study of flow characteristics in a straight-flow combustion chamber with sudden expansion has been conducted. As a result of this study, the following curves have been obtained: flow average speed and speed pulsation at the channel entry point and at the channel cross-sections along its length; variation of speed, turbulence, longitudinal-axis and transverse-axis pulsation components of speed on the channel axis as well as backflow speed variation. The calculation of flow based on solution of boundary layer equations satisfactorily coincides with the experimental data.

Characteristic, flow, speed, channel, pulsation, experimental data
Информация об авторах

Егоров Александр Григорьевич, кандидат технических наук, доцент Тольяттинского государственного университета. Тел.(8482) 29-69-76, (8482) 26-12-23. E-mail: eag@tltsu.ru. Область научных интересов: исследование течения жидкостей и газов.

Зоткин Виктор Иванович, кандидат педагогических наук, начальник кафедры Организации и управления противопожарными подразделениями Тольяттинского военного технического института. Тел. (8482) 32-58-83. Область научных интересов: пожарная безопасность; организация пожаротушения.

Иванин Сергей Викторович, младший научный сотрудник Научно-исследовательской лаборатории «Пожарная безопасность» Тольяттинского военного технического института. Тел. (8482) 32-22-57; e-mail: nilpb@list.ru. Область научных интересов: искровое зажигание; пожарная безопасность; пневмотранспортировка; промышленные порошки алюминия.

Egorov Alexander Grigorjevich, Candidate of Engineering Science, associate professor of Togliatti State University. Phone (8482) 26-12-23. E-mail: eag@tltsu.ru. Area of research: study of flow characteristics in a straight-flow combustion.

Zotkin Viktor Ivanovich, the candidate of pedagogical sciences, the chief of faculty «the Organizations and managements of fire-prevention divisions» Togliatti Military Technical Institute. Phone: (8482)-32-58-83. Area of research: fire safety; the organization of suppression of fires.

Iwanin Sergey Victorovich, the younger scientific employee of Research laboratory «Fire safety» Togliatti Military Technical Institute. Phone: (8482) 32-22-57, E-mail: nilpb@list.ru. Area of research: spark ignition; fire safety; pneumotransportation; industrial powders of aluminium.