Dependence of methane laminar flame propagation speed on the pressure and initial temperature


Cite item

Full Text

Abstract

The paper presents the results that allowed obtaining the dependence of laminar flame propagation speed Sl on the equivalence ratio for a wide range of pressures and temperatures during methane combustion. A literature review was carried out to summarize the experimental data on the measurement of the Sl. The Sl was calculated using a kinetic mechanism GRI 3.0 within the required pressure and temperature range. The calculation results were generalized in the MATLAB software product to verify the Sl power dependencies on pressure and initial temperature. The results of calculation on the basis of the obtained approximating dependence were compared with the experimental data and results obtained by other authors. It was found that the exponents of power for the dependency on pressure and temperature are described not by constants or linear relations, but by second-degree equations on the fuel-air ratio. The results can be used in three-dimensional simulation of combustion processes and in calculations performed using engineering practices.

About the authors

S. V. Lukachev

Samara National Research University

Author for correspondence.
Email: lucachev@ssau.ru

Doctor of  Science (Engineering), Professor
Head of the Department of Thermal Engineering and Thermal Engines

Russian Federation

S. G. Matveev

Samara National Research University

Email: pfu@ssau.ru

Candidate of Science (Engineering)
Associate Professor of the Department of Thermal Engineering and Thermal Engines

Russian Federation

I. A. Zubrilin

Samara National Research University

Email: zubrilin416@mail.ru

junior researcher

Russian Federation

A. V. Sigidaev

Samara National Research University

Email: tophado787@yandex.ru

graduate student

Russian Federation

References

  1. Snegirev A.Yu. Osnovy teorii goreniya [Basics of the theory of combustion]. Moscow: Polytechnic University Publ., 2014. 352 p.
  2. Zeldovich Y.B., Frank-Kamenetskii D.A. Theory of thermal flame propagation. Journal Physical Chemistry. 1938. V. 12. P. 100-105.
  3. Herweg R.A., Maly R.R. Fundamental model for flame kernel formation in S. I. Engines. SAE Technical Paper Series. 1992. doi: 10.4271/922243
  4. Zimont V., Polifke M., Bettelini W., Weisenstein A. An efficient computational model for premixed turbulent combustion at high reynolds numbers based on a turbulent flame speed closure. Journal of Gas Turbines Power. 1998. V. 120, Iss. 3. P. 526-532. doi: 10.1115/1.2818178
  5. Rao K.V-L., Lefebvre A.H. Flame blowoff studies using large-scale flameholders. Journal of Engineering for Power. 1982. V. 104, Iss. 4. P. 853-857. doi: 10.1115/1.3227355
  6. Rizk N.K., Lefebvre A.H. Influence of laminar flame speed on the blowoff velocity of bluff-body-stabilized flames. AIAA Journal. 1984. V. 22, Iss. 10. P. 1444-1447. doi: 10.2514/3.8801
  7. Radhakrishnan K., Heywood J.B., Tabaczynsky R.J. Premixed turbulent flame blowoff velocity correlation based on coherent structures in turbulent flows. Combustion and Flame. 1981. V. 42. P.19-33. doi: 10.1016/0010-2180(81)90139-5
  8. Lefebvre A.H., Ballal D.R. Gas turbine combustion. New York: CRC Press, 2010. 538 p.
  9. Kutsenko Yu.G., Inozemtsev A.A., Gomzikov L.Y. Modeling of turbulent combustion process and lean blowout of diffusion and premixed flames using a combined approach. ASME Turbo Expo 2009: Power for Land, Sea, and Air. 2009. V. 2. P. 889-902. doi: 10.1115/gt2009-60131
  10. Chen J.H. Petascale direct numerical simulation of turbulent combustion – fundamental insights towards predictive models. Proceedings of the Combustion Institute. 2011. V. 33, Iss. 1. P. 99-123. doi: 10.1016/j.proci.2010.09.012
  11. ANSYS A. Version 15.0; ANSYS. Inc. Canonsburg, 2013.
  12. Gottgens J., Mauss F., Peters N. Analytic approximations of burning velocities and flame thicknesses of lean hydrogen, methane, ethylene, ethane, acetylene and propane flames. Symposium (International) on Combustion. 1992. V. 24, Iss. 1. Р. 129-135. doi: 10.1016/s0082-0784(06)80020-2
  13. Smooke M.D. Reduced kinetic mechanisms and asymptotic approximations for methane-air flames. Lecture Notes in Physics. 1991. V. 384. doi: 10.1007/bfb0035362
  14. Metghalchi M., Keck J.C. Burning velocities of mixtures of air with methanol, isooctane, and indolene at high pressure and temperature. Combustion and Flame. 1982. V. 48. P. 191-210. doi: 10.1016/0010-2180(82)90127-4
  15. Egolfopoulos F., Cho N.P., Law C.K. Laminar flame speeds of methane-air mixtures under reduced and elevated pressures. Combustion and Flame. 1989. V. 76, Iss. 3-4. P. 375-391. doi: 10.1016/0010-2180(89)90119-3
  16. Taylor S.C. Burning velocity and the influence of flame stretch. Ph.D. Thesis. University of Leeds, 1991.
  17. Vagelopoulos C.M., Egolfopoulos F.N., Law C.K. Further considerations on the determination of laminar flame speeds with the counterflow twin-flame technique. Symposium (International) on Combustion. 1994. V. 25, Iss. 1. P. 1341-1347. doi: 10.1016/s0082-0784(06)80776-9
  18. Maaren Van A., Thung D.S., De Goey L.R.H. Measurement of flame temperature and adiabatic burning velocity of methane/air mixtures. Combustion Science and Technology. 1994. V. 96, Iss. 4-6. P. 327-344. doi: 10.1080/00102209408935360
  19. Just Th. http://combustion.berkeley.edu/gri-mech/version30/targets30/f5.html
  20. Aung K.T., Tseng L.-K.M., Ismail A., Faeth G.M. Laminar burning velocities and Markstein numbers of hydrocarbon/air flames. Combustion and Flame. 1995. V. 102, Iss. 4. P. 523-525. doi: 10.1016/0010-2180(95)00034-4
  21. Hassan M.I., Aung K.T., Faeth G.M. Properties of Laminar Premixed CO/H/Air Flames at Various Pressures. Combustion and Flame. 1997. V. 13, Iss. 2. P. 239-245. doi: 10.2514/2.5154
  22. GU X.J., Haq M.Z., Lawes M., Woolley R. Laminar burning velocity and Markstein lengths of methane-air mixtures. Combustion Flame. 2000. V. 121, Iss. 1-2. P. 41-58. doi: 10.1016/s0010-2180(99)00142-x
  23. Rozenchan G., Zhu D.L., Law C.K., Tse S.D. Outward propagation, burning velocities, and chemical effects of methane flames up to 60 atm. Proceedings of the Combustion Institute. 2002. V. 29, Iss. 2. P. 1461-1470. doi: 10.1016/s1540-7489(02)80179-1
  24. Bosschaart K.J., de Goey L.P.H. The Laminar burning velocity of flames propagating in mixtures of hydrocarbons and air measured with the heat flux method. Combustion and Flame. 2004. V. 136, Iss. 3. P. 261-269. doi: 10.1016/j.combustflame.2003.10.005
  25. GRI 3.0. Available at:http://www.me.berkeley.edu/gri_mech
  26. Hunt B.R., Lipsman R.L., Rosenberg J.M. A guide to MATLAB: for beginners and experienced users. Cambridge University Press, 2014. 346 p.
  27. Goswami M.S., Derks K., Coumans W.J., Slikker M.H. de Andrade Oliveira, Bastiaans R.J.M., Luijten C.C.M., de Goey L.P.H., Konnov A.A. The effect of elevated pressures on the laminar burning velocity of methane + air mixtures. Combustion and Flame. 2013. V. 160, Iss. 9. P. 1627-1635. doi: 10.1016/j.combustflame.2013.03.032
  28. Liao S.Y., Jiang D.M., Cheng Q. Determination of laminar burning velocities for natural gas. Fuel. 2004. V. 83, Iss. 9. P. 1247-1250. doi: 10.1016/j.fuel.2003.12.001
  29. Christensen M., Nilsson E.J.K., Konnov A.A. The Temperature dependence of the laminar burning velocities of methyl formate + air flames. Fuel. 2015. V. 157. P. 162-170. doi: 10.1016/j.fuel.2015.04.072

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 VESTNIK of Samara University. Aerospace and Mechanical Engineering

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies