Problems and prospect of microgasturbines development for unmanned aerial vehicle propulsion

Cover Page

Cite item

Full Text

Abstract

Today, there is considerable interest in unmanned aerial vehicles (UAVs). The correct choice of a propulsion system for UAVs, especially for small and medium-size classes, is a difficult task. Despite a number of significant advantages of microgasturbines (MGT) compared with the electric motors and internal combustion engines, first have a very low overall efficiency of the order about 17%, which was caused by low cycle parameters and low propulsion efficiency of modern MGT. So, improvement of MGT’s efficiency leads to better overall performance of UAVs and carrying out of further experiments and developing new approaches to MGT is very important.

About the authors

I. A. Zhdanov

Institut für Luftfahrtantriebe (ILA), Universität Stuttgart, Stuttgart

Author for correspondence.
Email: ivan.zhdanov@hotmail.com

Doctoral Candidate

Germany

S. Staudacher

Institut für Luftfahrtantriebe (ILA), Universität Stuttgart, Stuttgart

Email: stephan.staudacher@ila.uni-stuttgart.de

Doctor of Technical Sciences

Professor

Germany

S. V. Falaleev

Samara State Aerospace University

Email: kipdla@ssau.ru

Doctor of Technical Sciences

Professor

Russian Federation

References

  1. Harris, C. NASA supercritical airfoils/ C. Harris in NASA Technical Paper 2969. 1990.
  2. Kasper, C. Untersuchung zur Seitenwandkonturierung für Gasturbinen an einem Ringgitter-Wasserkanal / C. Kasper in Institut für Luftfahrtantriebe. 2009, Universität Stuttgart: Stuttgart.
  3. Kasper, C.A Study of unsteady secondary flow in a water flow axial turbine model / C. Kasper, M. Rose, S. Staudacher [et al] ASME Turbo Expo, Berlin, Germany, 2008 (GT2008-50239).
  4. Lutoschkin, E. Untersuchung der Sekundärströmungen an einem Turbinenlaufgitter im Flachwasserkanal / E. Lutoschkin in Institut für Luftfahrtantriebe. 2006, Universität Stuttgart: Stuttgart.
  5. Machinchy, A. Best in the West/ A. Machinchy Jet International, Tramplet, London, 2011(106).
  6. Matsunuma, T. Unsteady flow field of an axial-flow turbine rotor at a low Reynolds number/ T. Matsunuma ASME Turbo Expo, Barcelona, Spain, 2006(GT2006-90013).
  7. Matsunuma, T. Effects of Low Reynolds Number on Wake-Generated Unsteady Flow of an Axial-Flow Turbine Rotor / T. Matsunuma, Y. Tsutsui International Journal of Rotating Machinery 2005. 1: p. 1-15.
  8. Mueller, T. Boundary Layer Measurements on an Airfoil at a Low Reynolds Number in an Oscillating Freestream / T. Mueller, M. Brendel AIAA Journal, 1988. 26(3).
  9. Mueller, T. Aerodynamics of Small Vehicles/ T. Mueller, D. DeLaurier Annu. Rev. Fluid Mech., 2003. 35.
  10. NACA, The caracteristics of 78 related sections from test in the variable-density wind tunnel. 1935.
  11. Ries, T. LP turbine laminar separation with actuated transition / T. Ries, F.Mohr, J. Baumann [et al] DNS, experiment and fluidic oscillator CFD. ASME Turbo Expo, 2009(GT2009-59600).
  12. Schilling, F. Untersuchungen zum Betriebsverhalten von Mikrogasturbinen, in Institut für Luftfahrtantriebe / F. Schilling 2009, Universität Stuttgart: Stuttgart. p. 147.
  13. Schilling, F. Untersuchung zum Einfluss von Sekundäreffekten auf das Betriebsverhalten von Mikrogasturbinen /F. Schilling, S. Staudacher DGLR, 2008.
  14. Schreckling, K. Gas Turbine Engines for Model Aircraft/ K. Schreckling 2003, London, UK: Tramplet.
  15. Schumann, T. Experimentelle Untersuchungen zur Grenzschichtbeeinflussung hochbelasteter Niederdruckturbinen / T. Schumann in Institut für Luftfahrtantriebe. 2010, Universität Stuttgart: Stuttgart.
  16. Staudacher, S. The Design of the ILA001 Micro Gas Turbine / S.Staudacher, F. Schilling, J. Student ISABE, 2003.
  17. H.-F.Vogt, Sekundärströmungen in Turbintngittern mit geraden und getrümmten Schaufeln; Visialisirung im ebenen Wasserkanal. Forschung im Ingenierwesen/ H.-F.Vogt, M. Zippel Engineering Research 1996. Bd. 62(Nr.9): p. 247-253.
  18. Wang, S. Numerical investigations on dynamic stall of low Reynolds number flow around oscillating airfoils / S.Wang, D. Ingham, L. Mab [et al] Computers & Fluids, 2010. 39: p.1529–1541.
  19. Zhou, Y. Fluid forces on a very low Reynolds number airfoil and their prediction / Y. Zhou, M.Alam, H. Yang [etal] International Journal of Heat and Fluid Flow, 2011. 32 p. 329–339.
  20. Экспериментальное определение характеристик малоразмерных лопаточных машин [Текст] / О. Батурин, И. Дмитриева, А. Лапшин [и др.] .- Самара: Издательство СГАУ. 2006.
  21. Ван-Дайк, М. Альбом течений жидкости и газа [Текст] / М. Ван-Дайк.- М.: Мир, 1986.
  22. Кулагин, В.В. Теория, расчёт и проектирование авиационных двигателей и энергетических установок [Текст] / В.В.Кулагин - М.: Машиностроение, 2002.
  23. Наталевич, А. Воздушные микротурбины. [Текст] / А. Наталевич - М.: Машиностроение, 1979.
  24. Павлушенко, М. Беспилотные летательные аппараты: история, применение, угроза распространения и перспективы развития [Текст] / М. Павлушенко, Г. Евстафьев, И. Макаренко - М.: Права человека, 2005.
  25. Фабрикант, Н. Аэродинамика [Текст] / Н. Фабрикант - М.: Наука, 1964.
  26. Холщевников, К. Теория и расчёт авиационных лопаточных машин [Текст] / К. Холщевников, О. Емин, В. Митрохин - М.: Машиностроение, 1986.
  27. Юрьев, Б. Экспериментальная аэродинамика [Текст] / Б. Юрьев - М.: Оборонгиз, 1939. - Т.1.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2015 VESTNIK of the Samara State Aerospace University

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies