MODELING OF A NONLINEAR OSCILLATOR WITH COLLISIONS



Cite item

Full Text

Abstract

In present work the equation of the oscillator with collisions, which is described under the Hertz contact theory is solved numerically. The computational experiment showed that on the overall oscillations, excited by an external force, are imposed the damped oscillations at a higher frequency, which correspond to elastic collisions of the oscillator. Wavelet transform of the numerical solution of oscillator equation and the experimental results obtained with the measuring stand was performed. Wavelet analysis of complex acoustic signals allows to detect small-scale features that are important for the interpretation of the experiment.

About the authors

V. V. Narozhnov

Samara National Research University

Author for correspondence.
Email: morenov.sv@ssau.ru
Russian Federation

References

  1. Moon F. Khaoticheskie kolebaniia: Vvodnyi kurs dlia nauchnykh rabotnikov i inzhenerov . M.: Mir, 1990, 312 p. .
  2. Sbornik trudov Vsesoiuznogo simpoziuma ”Kolebatel’nye protsessy v biologicheskikh i khimicheskikh sistemakh”Pod red. G.M. Franka . M.: Nauka, 1967, 439 p. .
  3. Parshakov A.N. Fizika kolebanii: ucheb. posobie . Perm: Izd-vo Perm. gos. tekhn. un-ta, 2010, 302 p. .
  4. Popov V.L. Mekhanika kontaktnogo vzaimodeistviia i fizika treniia. Ot nanotribologii do dinamiki zemletriasenii . M.: FIZMATLIT, 2013, 352 p. .
  5. Bhushan B. Scanning Probe Microscopy in Nanoscience and Nanotechnology. Berlin: Springer, 2010, 956 p. .
  6. Dyakonov V.P. Simulink 5/6/7: Samouchitel’ . M.: DMK-Press, 2008, 784 p. .
  7. Narozhnov V.V. Nelineinaia dinamika i akusticheskie signaly pri uprugikh soudareniiakh zonda s poverkhnost’iu tverdogo tela . Izvestiia vysshikh uchebnykh zavedenii. Prikladnaia nelineinaia dinamika , 2013, Vol. 21, no 6, pp. 49–57 .
  8. Narozhnov V.V. Imitatsionnoe modelirovanie nelineinogo ostsilliatora s uchetom uprugikh soudarenii . Nelineinyi mir , 2014, Vol. 12, no. 11, pp. 32–36 .
  9. Astafieva N.M. Veivlet-analiz: osnovy teorii i primery primeneniia . UFN , 1996, Vol. 166, no. 11, pp. 1145–1170 .
  10. Dobesi I. Desiat’ lektsii po veivletam . Izhevsk: NITs ”Reguliarnaia i khaoticheskaia dinamika”, 2001, 464 p. .
  11. Dyakonov V.P. Veivlety. Ot teorii k praktike . M.: SOLON-R, 2002, 448 p. .
  12. Koronovsky A.A., Hramov A.E. Nepreryvnyi veivletnyi analiz i ego prilozheniia . M.: FIZMATLIT, 2003, 176 p. .
  13. Muzy J.F., Bacry E., Arneodo A. Multifractal formalism for fractal signals: The structure-function approach versus the wavelet-transform modulus-maxima method. Physical Review E., 1993, Vol. 47, no. 2, pp. 875–884 .
  14. Mallat S. A Wavelet Tour of Signal Processing. The Sparse Way. MA: Academic Press, 2009, 805 p. .
  15. Ke L., Houjun W. A Novel Wavelet Transform Modulus Maxima Based Method of Measuring Lipschitz Exponent. International Conference on Communications, Circuits and Systems, Kokura, 2007, pp. 628–632 .
  16. Narozhnov V.V., Rekhviashvili S.Sh. Stand for the study of viscoelastic properties of metals and alloys using the probe acoustic method: patent 2552600 Russian Federation: G01N11/00; Applicant and patent owner Institute of Applied Mathematics and Automation. №2013124372/28; Priority date: May 27, 2013; issued on 03/04/2015 .
  17. Lebedeva E.A., Postnikov E.B. Veivlet Meiera uluchshennoi lokalizatsii . Vychislitel’nye metody i programmirovanie , 2006, Vol. 7, pp. 122–124 .

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Narozhnov V.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies