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1. Introduction

Let X be a topological space. By C(X) is denoted the ring of all continuous real valued functions on
the space X with the compact-open topology. The diagonal product of all mappings at C(X) is defined by
the embedding of X intoRC(X),

If X is compact, then closed span of its images is a convex compact space which is denoted by P(X) [6].
On the other hand the probability measure functor P is covariant functor acting in the category of compact
spaces and their continuous maps. P(X) is a convex subspace of a linear space M(X) conjugate to the
space C(X) of continuous functions on X with the weak topology, consisting of all non-negative functional
p(i.e.u () = 0) for every non-negative ¢ € C'(X) with unit norm [2,7]. For a continuous map f: X — Y
the mapping

P(f):P(X)— P(Y)
is defined as follows (P (f)(u))e=p(pof).

The space P(X) is naturally embedded inRX). The base of neighborhoods of a measure p € P (X)
consists of all sets of the form O (u1,¢1,p2, ..., 0,¢) = {u' € P(X) : |u(p;) — ' (vi)] < &,a=1,k,} where
e>0, @1,p2,...,0 € C(X) are arbitrary functions.

2. About a topology on a subspace of the space of probability
measures

Let F be a subfunctor of P with a finite support. Then the base of neighborhoods of a measure pg =

s+1
=m{-5(x1)+...4+m2-6(zs) € f(X) consists of sets of the form O < pg,Uy,...,Us >={pu € F(X):p= E%ui},

i=
where p; € M*(X) is the set of all non-negative functional and ||u;41|| < e, suppu; C Upl|lul| —mf| < e
for i =1,...,.5, where Uj,...,Us— are neighborhoods of points x1,...,xs with disjoint closures.
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In fact, first we show that the set 0 < ug,Us,...,Ug,€ > contains a neighborhood of the measures pg in
the weak topology. For each i =1,...,S we take the function ¢; : X — I, satisfying the conditions: ¢;([U;]

= 1,¢;( U [U;]) = 0. Furthermore, we take the function ¢s4q1 : X — I so that ¢ (X\U1U...UUs) =1,
J#1
and @gy1 ({21,...,25}) = 0. Now let us check the inclusion

0 (/”‘agola "'5Q087@8+1a8/2) cCO< (/’[’07 U17 "'US,E) . (21)

We present a measure p € O (o, @1, -, Ps; Ps+1,€/2) in the form g = py+...4+ps+pst1, where suppu; C U;
for i = 1,..., S, suppp; C X\ (U1 U...UUs). Then § > [u(pst1) — p(@st1)] = [p(pst1)]- But psp1 < p, so
pst1(pst1) < 5 at the same time, by definition of the function ¢si1 we have poi1 (psr1) = psy1 (1z) =

= [lps41ll. So, |lus41ll < § < e. To prove the inclusion (1) it remains to show that |||ul| —m?| < e. We

have 5 > |uo (i) = p (@)l = ko (i)l = [ (i) = mQ = [(u1 + .. + ps + pst1) (93)| = @i /by definition of
the function [ =m = (i + psi1) (i) = m§ — i (0) = psyr (0i) = m = il = prorr (@i). Consequently,
my — ||l < 5+ psta (‘Pz) S5 tust1(le) =5+ lpsra <5+ 5=¢

On the other hand, § > ,u1 (i) + st (goz) m? = ||pil] = m? + ps41 (@) thus |[p]| —m < 5. The Inequality
|||zl = m?| < & and the inclusion (1) are proved.

We now show that in every neighborhood of the base O (uo, @1, ¥2, ..., Pk, &) there is a neighborhood of
the form O < pg, Uy, ...,Us,d >. It is enough to consider the neighborhood of the form O (g, p,€) ,since the
family of neighborhoods of the measureyg in the form O < pg,Us,...,Us,d > is directed down by inclusion
/ intersection of a finite number of neighborhoods of this type contains a neighborhood of the same form
/. This follows from the validity of the inclusion

O < o, U NUEN...OUNU2Z, - mln{51,52} >C 0 < Uy, U},...,UL 61 > 00 < po, U, ..., U2, 65 > (2.2)

The main part of checking is the following:
wU) = U NUZ) + pUNUE N UZ) < (U N UZ) + p(X\ U U:NU2)) <
<u(U}ﬂUf)+%mm{51,52}\ (UzlﬂU,Lz) (5

Therefore, for the measure p from the left side of proved inclusion (3. 1) we have
po(U}) — p(U7) < po(U7) — (U NUZ) = m — p(U NU7) < gmin{dy, 02} < 4
on the other hand ' _
u(UF) = po(U7) < p(UL N UZ) + 36, —m? < L min {6y, 82} + 36, < 6.

It remains to find a neighborhood of the form O < pg,Us,...,Us,0 > in the neighborhood O(uog, ¢, €).
Since O(po, A, Ae) = O(po, ,€), for A > 0, we can assume that ||¢| < 1. Moreover, one can also assume
that ¢ > 0. For § > 0 we take disjoint neighborhoods U; of the points z; so that ocsillations of the function
@ on U; was less than 4.

Then |uo(p) —plp)l < Imip(z1) — [ wdul + .. + |mYp(zs) = [@dul + | [ ¢du|. Further
w1 Us X\U1U...UU4

Imp(w;) — fsodul = |m{p(a;) - fsowzdfwfsowzdu fsodul < mp(a;) fsowzdu +

+ |f oldu| < @(x:)|m? — ||| —|— f lo(z;) <p|d,u (:rz)5+5||,ul|\ 26, Therefore, for 5 < @5ty the

1nclu810n O < pg,Uy,...,Ug,6 >C O(uo,go,e) holds.

3. Basic notions and conventions

It is known that for an infinite compact space X, the space P(X) is homeomorphic to the Hilbert cube @
[5], where Q = H -1 ] [—1,1] is the segment in the real line R. For a natural number n € N by P, (X)

we denote the set of all probability measures with support consisting of at most n points, i.e. P, (X) =
={u € P(X):|suppu| < n}.The compact P, (X) is convex combinations of
n
Dirac measures of the form: g =m0z, + mody, + ... + Mpdy,, Y. m; =1,m; > 0,z;, € X, 0,,— is the Dirac
i=1
o0
measure at the point z;. By ¢ (X) we denote the set of all Dirac measures and P, (X) = |J P, (X). Recall

n=1
that the space Py (X) C P (X) consists of all probability measures in the form p=midy, +mady, +...+
+myd,, of finite supports, for each of which m, > l?l for some i [2,7]. For a natural n put Py, = PfﬁP
for the compact z. For compact X Py, (X)={u— Pr(X):|supp u| <n} and hold. For the compact X
by P¢(X) we denote the set of all measures u € P(X), support of each of which is contained to one of the
components of the compact X [7].
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We say that a functor Fj is a subfunctor (respectively ontofunctor) of a functor Fy, if there is a natural
transformation h : F; — F; such that for every object X the mapping h(X) : Fi(X) — F(X) is a
monomorphism (epimorphism). By exp we denote the well known hyperspace functor of closed subsets. For
example, the identity functor Id is a subfunctor of the functor exp,, where exp,X = {F € expX : |F| < n}
and n— of n-degree is a ontofunctor of exp, and SPZ. A normal subfunctor F' of the functor P, is uniquely
determined by its value F'(n) on 7 where {n} denotes n-point set {0,1,...,n—1}. Note that P,(n) is the (n—
—1)-dimensional simplex 6"~ . Any subset of (n—1) - dimensional simplex ¢"~! defines a normal subfunctor
of the functor P,, if it is invariant with respect to simplicial mappings to itself.

Definition [7]. A normal subfunctor Fof the functor P, is locally convex if the set F'(72) is locally convex.

An example which is not a normal subfunctor of the functor P, is the functor PS of probability measures,
whose supports contains in one of components of a space. One of the examples of locally convex subfunctors
of the functor P, is a functor SP™ = SPg , where S, is a group of homeomorphisms (permutation group)
of m-point set.

o0

Definition [1,8]. We say that a space X is countable dimension (shortly X € ¢-d), if X = |J X,,, where

dim X,, < oo for each n. In particular, X is a countable union of zero-dimensional spaces, i.z. 1dim X;=0
for every X;.

Theorem 1. If X € c¢-d, then Py ,(X) € c-d for each n € N.

Proof. Let X € ¢-d. Then X is a countable union of finite-dimensional spaces dim X; < co in the sense
of dim. In this case, Pf,(X) is a countable union of Py, (X;), i.e. P;n(X) = Prn(U Xi) = U Prn(Xi).

i=1 i=1

By [9] for each i € N the compact Py, (X;) is finite-dimensional in the sense of dim, i.e. dim Py, (X;) < oo,
more accurately, dim Py, (X;) < ndim X; 4+ dim Py, (n) = ndim X; + n — 1. In this case dim Py, (n) =n —
—1, since Ps,, (n) is a part of the (n — 1)-dimensional simplex §"~! spanned by the points {1,2,...,n — 1},
i.e. for each i € N the space Py, (X;) is finite-dimensional. Hence, Py, (X) is a countable union of finite-
dimensional spaces. So Py, (X) € c-d. If X is a countable union of zero-dimensional spaces dim X, = 0, then
dim Py, (X;) =n—1 for each i € N. In this case, P, (X) is also a countable union of finite-dimensional
spaces, i.e. Pf, (X) € c¢-d.Theorem is proved.

oo
From the equation Py (X)= |J Pfn(X), in the particular case we have.
n=1

Corollary 1. If the compact X is a c¢-d space, then Py (X) € c-d.

Let X be a finite-dimensional compact. Then the space Py, (X) is also finite-dimensional. More accurately,
dim Pfp, (X) < ndim X +n—1=n(dimX + 1) —1. On the other hand, there is an open and closed mapping
decreasing dimension of spaces. Fibers of the mappings r;fn are similar cell, i.e. fibers are contractible to a
point.

Theorem 2. Suppose ¢ : X — Y is a continuous surjective open mapping between the infinite compacts
X and Y. Then the mapping Py, (@) : Py, (X) — Py, (Y) is also open.

Proof. Let X and Y be infinite compacts and let the mapping ¢ : X — Y be surjective and open.
Then by the normality of the functor Py, (¢) the mapping Py, (¢)is surjective. In this case, we have the
following commutative diagram

Pr (X)) Pr (1)
J r;fn 1 r}/,n (3.1)
§(X) —1[6(p)]6(Y)
where §(X) and §(Y) are Dirac measures on compacts X and Y. Let p(x) = mid,0 + mady, + ... +
Fbtas 73 (0 (X)) = 840, Prn () (10 (2)) = madyp + mady, + ..+ Mgy

From the fact that the mapping %, d(p) is open and the diagram (3) is commutative, it follows that
the mapping Ps ., () is open. Commutativity of diagram (3) follows from Lemma 2 of Uspensky’s work [3].
Theorem 2 is proved.

Similarly as theorem 2, one can proof the following.

Theorem 3. For infinite compacts X and Y a surjective map is open if and only if the map Py (¢):
P;(X) — Py (Y) is open.

Corollary 2. If X €c-d, then P, (X)€c-d, P,(X)€c-d and P, (X)e€ A(N)R.

Let X be a topological space and let A C X. A set & is called homotopy dense in X, if there is a
homotopy h: X x [0,1] = X such that h(z,0) =4id, and h: (X x (0,1]) C A. A set «/ is called homotopy
void if complement of 7 is homotopy dense in X. The set A C X is called the Z—set in X [4], if A is
closed and for each cover U € cov (X) there is a map f: X — X such that (f,id;) <U and f(X)NA=0.

Theorem 4. For any infinite compact X and for each n € N the compact P, (X)is the Z—set in B, (X).

Proof. By infinity of metric compact X the space P, (X) is convex and a locally convex metric space.
So, P,(X) € A(N)R. On the other hand, the space is compact. It is obvious that P, (X) is a subspace
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of P, (X), since the compact Pf, (X) is a subset of the compact P, (X). We fix a measure pg = +0,, +
+ £0ay + o + 10z,

Let [0,1] is the unit interval. We construct a homotopy h (u,t) : P, (X) x[0,1] — P, (X) getting h(p,t) =
= (1= t)p+tpo.

Obviously, h(p,0) = p ie. h(p,0) = idp, (x) and h(P,(X) x (0,1]) C P,(X)\P,(X). This means that
n € N for any subspace P, (X)\P,(X) homotopically dense in P,(X). Then the set P,(X) is homotopically
small in P, (X). Hence, by one of the results in [4], the subspace P, (X)\P,(X) € ANR and P, (X)\P, (X)
are AN R-spaces. In this case, from theorem 1.4.4. [4] it follows that P, (X) is the Z—set in P, (X). Theorem
4 is proved.

Lemma 1. For any infinite compact X each compact subset A of P, (X) is a Z—set, i.e. P, (X) has
the compact Z—property.

Proof. Let X be an infinite compact, A is compact subset, i.e. A C P, (X). Consider the set ANP, (X) =
= A,. It’s obvious that P, (X) C P»(X) C ... C P,(X) C ... By theorem 4, the set is a Z—set in P, (X)

o0

for each n € N. Then A= |J A, is 0 — Z—set and is closed in P, (X). Then by one of the results in [4]

n=1
A is a Z—set in P, (X). Lemma 1 is proved.
From Theorem 4 and Lemma 1, in particular, the cases arise.
Corollary 2. For any infinite compact X the followings hold:
a) The compact Py, (X) is a Z—set in P, (X) for all n € N.
b) The compact Py (X) is also Z—set in P, (X).

Corollary 3. For an arbitrary infinite compact X we have:

a) For each n € N the subspace P, (X)\Ps, (X) is an ANR space p homotopically dense in P, (X).
b) The subspace P, (X)\Pyn(X) is ANR and homotopically dense in P, (X).

We say that X has strongly discrete approximation property (shortly, SDAP) if for every map f: Q@ %
x N — X and for every cover U € cov(X) there exists a mapping f: Q x N — X such that (?, f) <U
and the family {f(Q x {n})} is discrete in X.

Let {x1,z2,...,2,41} be an (n+1)-point subset of the compact X. Fix the measure po = n+15'L1 +n+16 .
+...+ %4—15%“' It is clear that po€PR, (X) and pg € P, (X). We construct a homotopy h (u,t) : P, (X) X
x[0,1] = P, (X) getting h (u,t) = (1 —t) p+tpo. It is known that h (u,0) = idp, x) and h (i, (0, 1])OP (X) =
= (). By the structure of the space P, (X) an by the definition of the homotopy this satisfies the condition
of problem 10,1.4 of work [4], i.e. the set P, (X) is a strongly Z-set in.

Therefore, P, (X) is a strongly set and P, (X) € ANR, i.e. the following is true.

Theorem 5. For any infinite compact X the space P, (X) has strongly discrete approximation property,
ie. P,(X)e SDAP.
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T.®. Kypaes, A.X. Paxmamyanraes, 3.0. Typcyrosa?

CBOMICTBA IIOA®YHKTOPOB ®YHKTOPA BEPOATHOCTHBIX MEP
B KATErormudx cCcoMP

JanHast 3aMeTKa IIOCBSIIEHA COXPAaHEHUIO MOA(PYHKTOpaMu (QYyHKTOpa P BEpOATHOCTHBIX MeEp IIpo-
CTPAHCTB CYETHON Da3MEPHOCTH M SKCTEH30PHBIM CBOWCTBAM IOJIIPOCTPAHCTB IIPOCTPAHCTBA BEPOSTHOCT-
HBIX Mep.

Kuarodesbie cioBa: BEPOATHOCTHBIEC MEPbI, Pa3MEPHOCTDb, Z—MHO)KQCTBO7 TOMOTOIIMYECKH! IIJIOTHO, CHJIb-
HOE MUCKPETHOE aIllIPOKCHUMaIluOHHOE CBOHCTBO.
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