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1. Introduction

Let X be a topological space. By C(X) is denoted the ring of all continuous real valued functions on
the space X with the compact-open topology. The diagonal product of all mappings at C(X) is defined by
the embedding of X intoRC(X).

If X is compact, then closed span of its images is a convex compact space which is denoted by P (X) [6].
On the other hand the probability measure functor P is covariant functor acting in the category of compact
spaces and their continuous maps. P (X) is a convex subspace of a linear space M(X) conjugate to the
space C(X) of continuous functions on X with the weak topology, consisting of all non-negative functional
µ (i.e.µ (φ) > 0) for every non-negative φ ∈ C (X) with unit norm [2,7]. For a continuous map f : X → Y
the mapping

P (f) : P (X) → P (Y )

is defined as follows (P (f) (µ))φ = µ (φ ◦ f) .
The space P (X) is naturally embedded inRC(X). The base of neighborhoods of a measure µ ∈ P (X)

consists of all sets of the form O (µ1, φ1, φ2, ..., φk, ε) = {µ′ ∈ P (X) : |µ (φi)− µ′ (φi)| 6 ε, i = 1, k, } where
ε > 0, φ1, φ2, ..., φk ∈ C (X) are arbitrary functions.

2. About a topology on a subspace of the space of probability
measures

Let F be a subfunctor of P with a finite support. Then the base of neighborhoods of a measure µ0 =

= m0
1 ·δ(x1)+ ...+m0

s ·δ(xs) ∈ f(X) consists of sets of the form O < µ0, U1, ..., US >= {µ ∈ F (X) : µ =
s+1∑
i=1

µi},

where µi ∈ M+(X) is the set of all non-negative functional and ∥µi+1∥ < ε, suppµi ⊂ Ui,|∥µ∥ −m0
i | < ε

for i = 1, ..., S, where U1, ..., US− are neighborhoods of points x1, ..., xS with disjoint closures.
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In fact, first we show that the set 0 < µ0, U1, ..., US , ε > contains a neighborhood of the measures µ0 in
the weak topology. For each i = 1, ..., S we take the function φi : X → I, satisfying the conditions: φi([Ui]) =
= 1, φi(

∪
j ̸=1

[Uj ]) = 0. Furthermore, we take the function φs+1 : X → I so that φs+1 (X\U1

∪
...
∪

US) = 1,

and φs+1 ({x1, ..., xs}) = 0. Now let us check the inclusion

O (µ, φ1, ..., φs, φs+1, ε/2) ⊂ O < (µ0, U1, ...Us, ε) . (2.1)

We present a measure µ ∈ O (µ0, φ1, ..., φs, φs+1, ε/2) in the form µ = µ1+...+µs+µs+1, where suppµi ⊂ Ui

for i = 1, ..., S, suppµi ⊂ X\ (U1 ∪ ... ∪ Us) . Then ε
2 > |µ (φs+1)− µ (φs+1)| = |µ (φs+1)|. But µs+1 6 µ, so

µs+1 (φs+1) < ε
2 at the same time, by definition of the function φs+1 we have µs+1 (φs+1) = µs+1 (1x) =

= ∥µs+1∥. So, ∥µs+1∥ < ε
2 < ε. To prove the inclusion (1) it remains to show that

∣∣∥µ∥ −m0
i

∣∣ < ε. We
have ε

2 > |µ0 (φi)− µ (φi)| > |µ0 (φi)| − |µ (φi)| = m0
i − |(µ1 + ...+ µs + µs+1) (φi)| = φi /by definition of

the function / = m0
1 − (µi + µs+1) (φi) = m0

i − µi (φ) − µs+1 (φi) = m0
i − ∥µi∥ − µs+1 (φi). Consequently,

m0
i − ∥µi∥ < ε

2 + µs+1 (φi) 6 ε
2 + µs+1 (1x) =

ε
2 + ∥µs+1∥ < ε

2 + ε
2 = ε.

On the other hand, ε
2 > µi (φi)+µs+1 (φi)−m0

i = ∥µi∥−m0
i +µs+1 (φi) thus ∥µ∥−m0

i < ε
2 . The Inequality∣∣∥µ∥ −m0

i

∣∣ < ε and the inclusion (1) are proved.
We now show that in every neighborhood of the base O (µ0, φ1, φ2, ..., φk, ε) there is a neighborhood of

the form O < µ0, U1, ..., US , δ >. It is enough to consider the neighborhood of the form O (µ0, φ, ε) ,since the
family of neighborhoods of the measureµ0 in the form O < µ0, U1, ..., US , δ > is directed down by inclusion
/ intersection of a finite number of neighborhoods of this type contains a neighborhood of the same form
/. This follows from the validity of the inclusion

O < µ0, U
1
1 ∩ U2

1 ∩ ... ∩ U1
s ∩ U2

s ,
1

2
min {δ1, δ2} >⊂ O < U0, U

1
1 , ..., U

1
s , δ1 > ∩O < µ0, U

2
1 , ..., U

2
s , δ2 > (2.2)

The main part of checking is the following:

µ(U j
i ) = µ(U1

i ∩ U2
i ) + µ(U j

i \U1
i ∩ U2

i ) 6 µ(U1
i ∩ U2

i ) + µ(X\
s∪

e=1
(U1

e

∩
U2
e )) <

< µ
(
U1
i

∩
U2
i

)
+ 1

2 min {δ1, δ2} 6 µ
(
U1
i

∩
U2
i

)
+ 1

2δj .
Therefore, for the measure µ from the left side of proved inclusion (3.1) we have

µ0(U
j
i )− µ(U j

i ) 6 µ0(U
j
i )− µ(U1

i ∩ U2
i ) = m0

i − µ(U1
i ∩ U2

i ) 6 1
2 min {δ1, δ2} < δj

on the other hand
µ(U j

i )− µ0(U
j
i ) < µ(U1

i ∩ U2
i ) +

1
2δj −m0

i < 1
2 min {δ1, δ2}+ 1

2δj 6 δj .
It remains to find a neighborhood of the form O < µ0, U1, ..., US , δ > in the neighborhood O(µ0, φ, ε).

Since O(µ0, λφ, λε) = O(µ0, φ, ε), for λ > 0, we can assume that ∥φ∥ 6 1. Moreover, one can also assume
that φ > 0. For δ > 0 we take disjoint neighborhoods Ui of the points xi so that ocsillations of the function
φ on Ui was less than δ.

Then |µ0(φ)− µ(φ)| 6 |m0
1φ(x1)−

∫
u1

φdµ| + ... + |m0
sφ(xs)−

∫
us

φdµ| + |
∫

X\U1∪...∪Us

φdµ|. Further

|m0
iφ(xi)−

∫
ui

φdµ| = |m0
iφ(xi)−

∫
ui

φ(xi)dµ+
∫
ui

φ(xi)dµ−
∫
ui

φdµ| 6 m0
iφ(xi) −

∫
ui

φ(xi)dµ +

+ |
∫
ui

[φ(xi)− φ]dµ| 6 φ(xi)|m0
i − ∥µi∥|+

∫
ui

|φ(xi)− φ|dµ 6 φ(xi)δ+ δ∥µi∥ 6 2δ. Therefore, for δ < ε
(2S+1) the

inclusion O < µ0, U1, ..., US , δ >⊂ O(µ0, φ, ε) holds.

3. Basic notions and conventions
It is known that for an infinite compact space X, the space P (X) is homeomorphic to the Hilbert cube Q

[5], where Q =
∞∏
i=1

[−1, 1]
i

, [−1, 1] is the segment in the real line R. For a natural number n ∈ N by Pn (X)

we denote the set of all probability measures with support consisting of at most n points, i.e. Pn (X) =
= {µ ∈ P (X) : |suppµ| 6 n}.The compact Pn (X) is convex combinations of

Dirac measures of the form: µ = m1δx1 +m2δx2 + ...+mnδxn ,
n∑

i=1

mi = 1,mi > 0, xi ∈ X, δxi− is the Dirac

measure at the point xi. By δ (X) we denote the set of all Dirac measures and Pω (X) =
∞∪

n=1
Pn (X). Recall

that the space Pf (X) ⊂ P (X) consists of all probability measures in the form µ = m1δx1 +m2δx2 + . . .+
+mkδxk

of finite supports, for each of which mi > k
k+1 for some i [2,7]. For a natural n put Pf,n ≡ Pf ∩Pn

for the compact x. For compact X Pf,n (X) = {µ → Pf (X) : |supp µ| 6 n} and hold. For the compact X
by P c(X) we denote the set of all measures µ ∈ P (X), support of each of which is contained to one of the
components of the compact X [7].
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We say that a functor F1 is a subfunctor (respectively ontofunctor) of a functor F2, if there is a natural
transformation h : F1 → F1 such that for every object X the mapping h (X) : F1(X) → F2(X) is a
monomorphism (epimorphism). By exp we denote the well known hyperspace functor of closed subsets. For
example, the identity functor Id is a subfunctor of the functor expn, where expnX = {F ∈ expX : |F | 6 n}
and n− of n-degree is a ontofunctor of expn and SPn

G. A normal subfunctor F of the functor Pn is uniquely
determined by its value F (ñ) on ñ where {ñ} denotes n-point set {0, 1, ..., n−1}. Note that Pn(n) is the (n−
−1)-dimensional simplex σn−1. Any subset of (n−1) - dimensional simplex σn−1 defines a normal subfunctor
of the functor Pn, if it is invariant with respect to simplicial mappings to itself.

Definition [7]. A normal subfunctor Fof the functor Pn is locally convex if the set F (ñ) is locally convex.
An example which is not a normal subfunctor of the functor Pn is the functor P c

n of probability measures,
whose supports contains in one of components of a space. One of the examples of locally convex subfunctors
of the functor Pn is a functor SPn ≡ SPn

Sn
, where Sn is a group of homeomorphisms (permutation group)

of n-point set.

Definition [1,8]. We say that a space X is countable dimension (shortly X ∈ c ·d), if X =
∞∪

n=1
Xn, where

dimXn < ∞ for each n. In particular, X is a countable union of zero-dimensional spaces, i.e. dimXi = 0
for every Xi.

Theorem 1. If X ∈ c · d, then Pf,n(X) ∈ c · d for each n ∈ N .
Proof. Let X ∈ c · d. Then X is a countable union of finite-dimensional spaces dimXi < ∞ in the sense

of dim. In this case, Pf,n(X) is a countable union of Pf,n(Xi), i.e. Pf,n(X) = Pf,n(
∞∪
i=1

Xi) =
∞∪
i=1

Pf,n(Xi).

By [9] for each i ∈ N the compact Pf,n (Xi) is finite-dimensional in the sense of dim, i.e. dimPf,n (Xi) < ∞,
more accurately, dimPf,n (Xi) 6 ndimXi + dimPf,n (ñ) = ndimXi + n − 1. In this case dimPf,n (ñ) = n −
− 1, since Pf,n (ñ) is a part of the (n− 1)-dimensional simplex δn−1 spanned by the points {1, 2, ..., n− 1},
i.e. for each i ∈ N the space Pf,n (Xi) is finite-dimensional. Hence, Pf,n (X) is a countable union of finite-
dimensional spaces. So Pf,n (X) ∈ c ·d. If X is a countable union of zero-dimensional spaces dimXi = 0, then
dimPf,n (Xi) = n − 1 for each i ∈ N . In this case, Pf,n (X) is also a countable union of finite-dimensional
spaces, i.e. Pf,n (X) ∈ c · d.Theorem is proved.

From the equation Pf (X) =
∞∪

n=1
Pf,n (X), in the particular case we have.

Corollary 1. If the compact X is a c · d space, then Pf (X) ∈ c · d.
Let X be a finite-dimensional compact. Then the space Pf,n (X) is also finite-dimensional. More accurately,

dimPf,n (X) 6 ndimX+n−1 = n (dimX + 1)−1. On the other hand, there is an open and closed mapping
decreasing dimension of spaces. Fibers of the mappings rXf,n are similar cell, i.e. fibers are contractible to a
point.

Theorem 2. Suppose φ : X → Y is a continuous surjective open mapping between the infinite compacts
X and Y . Then the mapping Pf,n (φ) : Pf,n (X) → Pf,n (Y ) is also open.

Proof. Let X and Y be infinite compacts and let the mapping φ : X → Y be surjective and open.
Then by the normality of the functor Pf,n (φ) the mapping Pf,n (φ)is surjective. In this case, we have the
following commutative diagram

Pf,n (X)
Pf,n(φ)−→ Pf,n (Y )

↓ rXf,n ↓ rYf,n
δ (X) −→ [δ (φ)] δ (Y )

(3.1)

where δ (X) and δ (Y ) are Dirac measures on compacts X and Y . Let µ (x) = m1δx0
1
+ m2δx2 + ... +

+mkδxk
, rxf,n (µ0 (X)) = δx0

1
, Pf,n (φ) (µ0 (x)) = m1δy0

1
+m2δy2 + ...+mkδyk

.
From the fact that the mapping rxf,n, δ (φ) is open and the diagram (3) is commutative, it follows that

the mapping Pf,n (φ) is open. Commutativity of diagram (3) follows from Lemma 2 of Uspensky’s work [3].
Theorem 2 is proved.

Similarly as theorem 2, one can proof the following.
Theorem 3. For infinite compacts X and Y a surjective map is open if and only if the map Pf (φ) :

Pf (X) → Pf (Y ) is open.
Corollary 2. If X ∈ c · d, then Pn (X) ∈ c · d, Pω (X) ∈ c · d and Pω (X) ∈ A (N)R.
Let X be a topological space and let A ⊂ X. A set A is called homotopy dense in X, if there is a

homotopy h : X × [0, 1] → X such that h (x, 0) = idx and h : (X × (0, 1 ]) ⊂ A. A set A is called homotopy
void if complement of A is homotopy dense in X. The set A ⊂ X is called the Z−set in X [4], if A is
closed and for each cover U ∈ cov (X) there is a map f : X → X such that (f, idx) ≺ U and f (X)∩A = ∅.

Theorem 4. For any infinite compact X and for each n ∈ N the compact Pn (X)is the Z−set in Pω (X).
Proof. By infinity of metric compact X the space Pω (X) is convex and a locally convex metric space.

So, Pω (X) ∈ A (N)R. On the other hand, the space is compact. It is obvious that Pn (X) is a subspace
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of Pω (X), since the compact Pf,n (X) is a subset of the compact Pn (X). We fix a measure µ0 = 1
k δx1 +

+ 1
k δx2 + ...+ 1

k δxk
.

Let [0,1] is the unit interval. We construct a homotopy h (µ, t) : Pω (X)× [0, 1] → Pω (X) getting h(µ, t) =
= (1− t)µ+ tµ0.

Obviously, h(µ, 0) = µ i.e. h(µ, 0) = idPω(X) and h(Pω(X)× (0, 1]) ⊂ Pω(X)\Pn(X). This means that
n ∈ N for any subspace Pω(X)\Pn(X) homotopically dense in Pω(X). Then the set Pn(X) is homotopically
small in Pω(X). Hence, by one of the results in [4], the subspace Pω(X)\Pn(X) ∈ ANR and Pω (X) \Pn (X)
are ANR-spaces. In this case, from theorem 1.4.4. [4] it follows that Pω (X) is the Z−set in Pω (X). Theorem
4 is proved.

Lemma 1. For any infinite compact X each compact subset A of Pω (X) is a Z−set, i.e. Pω (X) has
the compact Z−property.

Proof. Let X be an infinite compact, A is compact subset, i.e. A ⊂ Pω (X). Consider the set A∩Pn (X) =
= An. It’s obvious that P1 (X) ⊂ P2 (X) ⊂ ... ⊂ Pn (X) ⊂ ... By theorem 4, the set is a Z−set in Pω (X)

for each n ∈ N . Then A =
∞∪

n=1
An is σ − Z−set and is closed in Pω (X). Then by one of the results in [4]

A is a Z−set in Pω (X). Lemma 1 is proved.
From Theorem 4 and Lemma 1, in particular, the cases arise.
Corollary 2. For any infinite compact X the followings hold:

a) The compact Pf,n (X) is a Z−set in Pω (X) for all n ∈ N .
b) The compact Pf (X) is also Z−set in Pω (X).

Corollary 3. For an arbitrary infinite compact X we have:
a) For each n ∈ N the subspace Pω (X) \Pf,n (X) is an ANR space µ homotopically dense in Pω (X).
b) The subspace Pω (X) \Pf,n (X) is ANR and homotopically dense in Pω (X).

We say that X has strongly discrete approximation property (shortly, SDAP) if for every map f : Q×
× N → X and for every cover U ∈ cov (X) there exists a mapping f : Q × N → X such that

(
f, f

)
≺ U

and the family
{
f (Q× {n})

}
is discrete in X.

Let {x1, x2, ..., xn+1} be an (n+1)-point subset of the compact X. Fix the measure µ0 = 1
n+1δx1+

1
n+1δx2+

+ ...+ 1
n+1δxn+1 . It is clear that µ0∈Pn (X) and µ0 ∈ Pω (X). We construct a homotopy h (µ, t) : Pω (X)×

×[0, 1] → Pω (X) getting h (µ, t) = (1− t)µ+tµ0. It is known that h (µ, 0) = idPω(X) and h (µ, (0, 1])∩Pn (X) =
= ∅. By the structure of the space Pω (X) an by the definition of the homotopy this satisfies the condition
of problem 10,1.4 of work [4], i.e. the set Pn (X) is a strongly Z-set in.

Therefore, Pω (X) is a strongly set and Pω (X) ∈ ANR, i.e. the following is true.
Theorem 5. For any infinite compact X the space Pω (X) has strongly discrete approximation property,

i.e. Pω (X) ∈ SDAP .
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Т.Ф. Жураев, A.X. Рахматуллаев, З.O. Турсунова2

СВОЙСТВА ПОДФУНКТОРОВ ФУНКТОРА ВЕРОЯТНОСТНЫХ МЕР
В КАТЕГОРИЯХ COMP

Данная заметка посвящена сохранению подфункторами функтора P вероятностных мер про-
странств счетной размерности и экстензорным свойствам подпространств пространства вероятност-
ных мер.
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