T.F. Zhuraev, A.Kh. Rakhmatullaev, Z.O. Tursunova ${ }^{1}$ SOME VALUES SUBFUNCTORS OF FUNCTOR PROBALITIES MEASURES IN THE CATEGORIES COMP

Abstract

This article is dedicated to the preservation by subfunctors of the functor P of spaces of probability measures countable dimension and extensor properties of spaces of probability measures subspaces.

Key words: probability measures, dimension, the Z-set, homotopy dense, strong discrete approximation properties.

Citation. Zhuraev T.F., Rakhmatullaev A.Kh., Tursunova Z.O. Some values subfunctors of functor probalities measures in the categories Comp. Vestnik Samarskogo universiteta. Estestvennonauchnaia seriia [Vestnik of Samara University. Natural Science Series], 2018, no. 24, no. 2, pp. 28-32. DOI: http://doi.org/10.18287/2541-7525-2018-24-2-28-32 [in Russian].

MSC: 54B15, 54B30, 54B35, 54C05, 54C15, 54C60, 54D30.

1. Introduction

Let X be a topological space. By $C(X)$ is denoted the ring of all continuous real valued functions on the space X with the compact-open topology. The diagonal product of all mappings at $C(X)$ is defined by the embedding of X into $R^{C(X)}$.

If X is compact, then closed span of its images is a convex compact space which is denoted by $P(X)$ [6]. On the other hand the probability measure functor P is covariant functor acting in the category of compact spaces and their continuous maps. $P(X)$ is a convex subspace of a linear space $M(X)$ conjugate to the space $C(X)$ of continuous functions on X with the weak topology, consisting of all non-negative functional $\mu(i . e . \mu(\varphi) \geqslant 0)$ for every non-negative $\varphi \in C(X)$ with unit norm [2,7]. For a continuous map $f: X \rightarrow Y$ the mapping

$$
P(f): P(X) \rightarrow P(Y)
$$

is defined as follows $(P(f)(\mu)) \varphi=\mu(\varphi \circ f)$.
The space $P(X)$ is naturally embedded in $R^{C(X)}$. The base of neighborhoods of a measure $\mu \in P(X)$ consists of all sets of the form $O\left(\mu_{1}, \varphi_{1}, \varphi_{2}, \ldots, \varphi_{k}, \varepsilon\right)=\left\{\mu^{\prime} \in P(X):\left|\mu\left(\varphi_{i}\right)-\mu^{\prime}\left(\varphi_{i}\right)\right| \leqslant \varepsilon, i=\overline{1, k},\right\}$ where $\varepsilon>0, \varphi_{1}, \varphi_{2}, \ldots, \varphi_{k} \in C(X)$ are arbitrary functions.

2. About a topology on a subspace of the space of probability measures

Let F be a subfunctor of P with a finite support. Then the base of neighborhoods of a measure $\mu_{0}=$ $=m_{1}^{0} \cdot \delta\left(x_{1}\right)+\ldots+m_{s}^{0} \cdot \delta\left(x_{s}\right) \in \overline{f(X)}$ consists of sets of the form $O<\mu_{0}, U_{1}, \ldots, U_{S}>=\left\{\mu \in F(X): \mu=\sum_{i=1}^{s+1} \mu_{i}\right\}$, where $\mu_{i} \in M^{+}(X)$ is the set of all non-negative functional and $\left\|\mu_{i+1}\right\|<\varepsilon, \quad \operatorname{supp} \mu_{i} \subset U_{i},\|\mu\|-m_{i}^{0} \mid<\varepsilon$ for $i=1, \ldots, S$, where $U_{1}, \ldots, U_{S}-$ are neighborhoods of points x_{1}, \ldots, x_{S} with disjoint closures.

[^0]In fact, first we show that the set $0<\mu_{0}, U_{1}, \ldots, U_{S}, \varepsilon>$ contains a neighborhood of the measures μ_{0} in the weak topology. For each $i=1, \ldots, S$ we take the function $\varphi_{i}: X \rightarrow I$, satisfying the conditions: $\varphi_{i}\left(\left[U_{i}\right]\right)=$ $=1, \varphi_{i}\left(\bigcup_{j \neq 1}\left[U_{j}\right]\right)=0$. Furthermore, we take the function $\varphi_{s+1}: X \rightarrow I$ so that $\varphi_{s+1}\left(X \backslash U_{1} \bigcup \ldots \bigcup U_{S}\right)=1$, and $\varphi_{s+1}\left(\left\{x_{1}, \ldots, x_{s}\right\}\right)=0$. Now let us check the inclusion

$$
\begin{equation*}
O\left(\mu, \varphi_{1}, \ldots, \varphi_{s}, \varphi_{s+1}, \varepsilon / 2\right) \subset O<\left(\mu_{0}, U_{1}, \ldots U_{s}, \varepsilon\right) \tag{2.1}
\end{equation*}
$$

We present a measure $\mu \in O\left(\mu_{0}, \varphi_{1}, \ldots, \varphi_{s}, \varphi_{s+1}, \varepsilon / 2\right)$ in the form $\mu=\mu_{1}+\ldots+\mu_{s}+\mu_{s+1}$, where supp $\mu_{i} \subset U_{i}$ for $i=1, \ldots, S$, supp $\mu_{i} \subset X \backslash\left(U_{1} \cup \ldots \cup U_{s}\right)$. Then $\frac{\varepsilon}{2}>\left|\mu\left(\varphi_{s+1}\right)-\mu\left(\varphi_{s+1}\right)\right|=\left|\mu\left(\varphi_{s+1}\right)\right|$. But $\mu_{s+1} \leqslant \mu$, so $\mu_{s+1}\left(\varphi_{s+1}\right)<\frac{\varepsilon}{2}$ at the same time, by definition of the function φ_{s+1} we have $\mu_{s+1}\left(\varphi_{s+1}\right)=\mu_{s+1}\left(1_{x}\right)=$ $=\left\|\mu_{s+1}\right\|$. So, $\left\|\mu_{s+1}\right\|<\frac{\varepsilon}{2}<\varepsilon$. To prove the inclusion (1) it remains to show that $\left|\|\mu\|-m_{i}^{0}\right|<\varepsilon$. We have $\frac{\varepsilon}{2}>\left|\mu_{0}\left(\varphi_{i}\right)-\mu\left(\varphi_{i}\right)\right| \geqslant\left|\mu_{0}\left(\varphi_{i}\right)\right|-\left|\mu\left(\varphi_{i}\right)\right|=m_{i}^{0}-\left|\left(\mu_{1}+\ldots+\mu_{s}+\mu_{s+1}\right)\left(\varphi_{i}\right)\right|=\varphi_{i} /$ by definition of the function $/=m_{1}^{0}-\left(\mu_{i}+\mu_{s+1}\right)\left(\varphi_{i}\right)=m_{i}^{0}-\mu_{i}(\varphi)-\mu_{s+1}\left(\varphi_{i}\right)=m_{i}^{0}-\left\|\mu_{i}\right\|-\mu_{s+1}\left(\varphi_{i}\right)$. Consequently, $m_{i}^{0}-\left\|\mu_{i}\right\|<\frac{\varepsilon}{2}+\mu_{s+1}\left(\varphi_{i}\right) \leqslant \frac{\varepsilon}{2}+\mu_{s+1}\left(1_{x}\right)=\frac{\varepsilon}{2}+\left\|\mu_{s+1}\right\|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$.

On the other hand, $\frac{\varepsilon}{2}>\mu_{i}\left(\varphi_{i}\right)+\mu_{s+1}\left(\varphi_{i}\right)-m_{i}^{0}=\left\|\mu_{i}\right\|-m_{i}^{0}+\mu_{s+1}\left(\varphi_{i}\right)$ thus $\|\mu\|-m_{i}^{0}<\frac{\varepsilon}{2}$. The Inequality $\left|\|\mu\|-m_{i}^{0}\right|<\varepsilon$ and the inclusion (1) are proved.

We now show that in every neighborhood of the base $O\left(\mu_{0}, \varphi_{1}, \varphi_{2}, \ldots, \varphi_{k}, \varepsilon\right)$ there is a neighborhood of the form $O<\mu_{0}, U_{1}, \ldots, U_{S}, \delta>$. It is enough to consider the neighborhood of the form $O\left(\mu_{0}, \varphi, \varepsilon\right)$, since the family of neighborhoods of the measure μ_{0} in the form $O<\mu_{0}, U_{1}, \ldots, U_{S}, \delta>$ is directed down by inclusion / intersection of a finite number of neighborhoods of this type contains a neighborhood of the same form /. This follows from the validity of the inclusion

$$
\begin{equation*}
O<\mu_{0}, U_{1}^{1} \cap U_{1}^{2} \cap \ldots \cap U_{s}^{1} \cap U_{s}^{2}, \frac{1}{2} \min \left\{\delta_{1}, \delta_{2}\right\}>\subset O<U_{0}, U_{1}^{1}, \ldots, U_{s}^{1}, \delta_{1}>\cap O<\mu_{0}, U_{1}^{2}, \ldots, U_{s}^{2}, \delta_{2}> \tag{2.2}
\end{equation*}
$$

The main part of checking is the following:

$$
\begin{gathered}
\mu\left(U_{i}^{j}\right)=\mu\left(U_{i}^{1} \cap U_{i}^{2}\right)+\mu\left(U_{i}^{j} \backslash U_{i}^{1} \cap U_{i}^{2}\right) \leqslant \mu\left(U_{i}^{1} \cap U_{i}^{2}\right)+\mu\left(X \backslash \bigcup_{e=1}^{s}\left(U_{e}^{1} \cap U_{e}^{2}\right)\right)< \\
<\mu\left(U_{i}^{1} \cap U_{i}^{2}\right)+\frac{1}{2} \min \left\{\delta_{1}, \delta_{2}\right\} \leqslant \mu\left(U_{i}^{1} \cap U_{i}^{2}\right)+\frac{1}{2} \delta_{j} .
\end{gathered}
$$

Therefore, for the measure μ from the left side of proved inclusion (3.1) we have

$$
\mu_{0}\left(U_{i}^{j}\right)-\mu\left(U_{i}^{j}\right) \leqslant \mu_{0}\left(U_{i}^{j}\right)-\mu\left(U_{i}^{1} \cap U_{i}^{2}\right)=m_{i}^{0}-\mu\left(U_{i}^{1} \cap U_{i}^{2}\right) \leqslant \frac{1}{2} \min \left\{\delta_{1}, \delta_{2}\right\}<\delta_{j}
$$

on the other hand

$$
\mu\left(U_{i}^{j}\right)-\mu_{0}\left(U_{i}^{j}\right)<\mu\left(U_{i}^{1} \cap U_{i}^{2}\right)+\frac{1}{2} \delta_{j}-m_{i}^{0}<\frac{1}{2} \min \left\{\delta_{1}, \delta_{2}\right\}+\frac{1}{2} \delta_{j} \leqslant \delta_{j}
$$

It remains to find a neighborhood of the form $O<\mu_{0}, U_{1}, \ldots, U_{S}, \delta>$ in the neighborhood $O\left(\mu_{0}, \varphi, \varepsilon\right)$. Since $O\left(\mu_{0}, \lambda \varphi, \lambda \varepsilon\right)=O\left(\mu_{0}, \varphi, \varepsilon\right)$, for $\lambda>0$, we can assume that $\|\varphi\| \leqslant 1$. Moreover, one can also assume that $\varphi \geqslant 0$. For $\delta>0$ we take disjoint neighborhoods U_{i} of the points x_{i} so that ocsillations of the function φ on U_{i} was less than δ.

Then $\left|\mu_{0}(\varphi)-\mu(\varphi)\right| \leqslant\left|m_{1}^{0} \varphi\left(x_{1}\right)-\int_{u_{1}} \varphi d \mu\right|+\ldots+\left|m_{s}^{0} \varphi\left(x_{s}\right)-\int_{u_{s}} \varphi d \mu\right|+\left|\int_{X \backslash U_{1} \cup \ldots \cup U_{s}} \varphi d \mu\right|$. Further $\left|m_{i}^{0} \varphi\left(x_{i}\right)-\int_{u_{i}} \varphi d \mu\right|=\left|m_{i}^{0} \varphi\left(x_{i}\right)-\int_{u_{i}} \varphi\left(x_{i}\right) d \mu+\int_{u_{i}} \varphi\left(x_{i}\right) d \mu-\int_{u_{i}} \varphi d \mu\right| \leqslant m_{i}^{0} \varphi\left(x_{i}\right)-\int_{u_{i}} \varphi\left(x_{i}\right) d \mu+$ $+\left|\int_{u_{i}}\left[\varphi\left(x_{i}\right)-\varphi\right] d \mu\right| \leqslant \varphi\left(x_{i}\right)\left|m_{i}^{0}-\left\|\mu_{i}\right\|\right|+\int_{u_{i}}\left|\varphi\left(x_{i}\right)-\varphi\right| d \mu \leqslant \varphi\left(x_{i}\right) \delta+\delta\left\|\mu_{i}\right\| \leqslant 2 \delta$. Therefore, for $\delta<\frac{\varepsilon}{(2 S+1)}$ the inclusion $O<\mu_{0}, U_{1}, \ldots, U_{S}, \delta>\subset O\left(\mu_{0}, \varphi, \varepsilon\right)$ holds.

3. Basic notions and conventions

It is known that for an infinite compact space X, the space $P(X)$ is homeomorphic to the Hilbert cube Q [5], where $Q=\prod_{i=1}^{\infty}[-1,1],[-1,1]$ is the segment in the real line R. For a natural number $n \in N$ by $P_{n}(X)$ we denote the set of all probability measures with support consisting of at most n points, i.e. $P_{n}(X)=$ $=\{\mu \in P(X): \mid$ supp $\mu \mid \leqslant n\}$. The compact $P_{n}(X)$ is convex combinations of

Dirac measures of the form: $\mu=m_{1} \delta_{x_{1}}+m_{2} \delta_{x_{2}}+\ldots+m_{n} \delta_{x_{n}}, \sum_{i=1}^{n} m_{i}=1, m_{i} \geqslant 0, x_{i} \in X, \delta_{x_{i}}-$ is the Dirac measure at the point x_{i}. By $\delta(X)$ we denote the set of all Dirac measures and $P_{\omega}(X)=\bigcup_{n=1}^{\infty} P_{n}(X)$. Recall that the space $P_{f}(X) \subset P(X)$ consists of all probability measures in the form $\mu=m_{1} \delta_{x_{1}}+m_{2} \delta_{x_{2}}+\ldots+$ $+m_{k} \delta_{x_{k}}$ of finite supports, for each of which $m_{i} \geqslant \frac{k}{k+1}$ for some $i[2,7]$. For a natural n put $P_{f, n} \equiv P_{f} \cap P_{n}$ for the compact x. For compact $X \quad P_{f, n}(X)=\left\{\mu \rightarrow P_{f}(X):|\operatorname{supp} \mu| \leqslant n\right\}$ and hold. For the compact X by $P^{c}(X)$ we denote the set of all measures $\mu \in P(X)$, support of each of which is contained to one of the components of the compact X [7].

We say that a functor F_{1} is a subfunctor (respectively ontofunctor) of a functor F_{2}, if there is a natural transformation $h: F_{1} \rightarrow F_{1}$ such that for every object X the mapping $h(X): F_{1}(X) \rightarrow F_{2}(X)$ is a monomorphism (epimorphism). By exp we denote the well known hyperspace functor of closed subsets. For example, the identity functor $I d$ is a subfunctor of the functor $\exp _{n}$, where $\exp _{n} X=\{F \in \exp X:|F| \leqslant n\}$ and n - of n-degree is a ontofunctor of $\exp p_{n}$ and $S P_{G}^{n}$. A normal subfunctor F of the functor P_{n} is uniquely determined by its value $F(\tilde{n})$ on \tilde{n} where $\{\tilde{n}\}$ denotes n-point set $\{0,1, \ldots, n-1\}$. Note that $P_{n}(n)$ is the ($n-$ -1)-dimensional simplex σ^{n-1}. Any subset of $(n-1)$-dimensional simplex σ^{n-1} defines a normal subfunctor of the functor P_{n}, if it is invariant with respect to simplicial mappings to itself.

Definition [7]. A normal subfunctor F of the functor P_{n} is locally convex if the set $F(\tilde{n})$ is locally convex.
An example which is not a normal subfunctor of the functor P_{n} is the functor P_{n}^{c} of probability measures, whose supports contains in one of components of a space. One of the examples of locally convex subfunctors of the functor P_{n} is a functor $S P^{n} \equiv S P_{S_{n}}^{n}$, where S_{n} is a group of homeomorphisms (permutation group) of n-point set.

Definition [1,8]. We say that a space X is countable dimension (shortly $X \in c \cdot d$), if $X=\bigcup_{n=1}^{\infty} X_{n}$, where $\operatorname{dim} X_{n}<\infty$ for each n. In particular, X is a countable union of zero-dimensional spaces, i.e. $\operatorname{dim} X_{i}=0$ for every X_{i}.

Theorem 1. If $X \in c \cdot d$, then $P_{f, n}(X) \in c \cdot d$ for each $n \in N$.
Proof. Let $X \in c \cdot d$. Then X is a countable union of finite-dimensional spaces $\operatorname{dim} X_{i}<\infty$ in the sense of dim. In this case, $P_{f, n}(X)$ is a countable union of $P_{f, n}\left(X_{i}\right)$, i.e. $P_{f, n}(X)=P_{f, n}\left(\bigcup_{i=1}^{\infty} X_{i}\right)=\bigcup_{i=1}^{\infty} P_{f, n}\left(X_{i}\right)$. By [9] for each $i \in N$ the compact $P_{f, n}\left(X_{i}\right)$ is finite-dimensional in the sense of dim, i.e. $\operatorname{dim} P_{f, n}\left(X_{i}\right)<\infty$, more accurately, $\operatorname{dim} P_{f, n}\left(X_{i}\right) \leqslant n \operatorname{dim} X_{i}+\operatorname{dim} P_{f, n}(\widetilde{n})=n \operatorname{dim} X_{i}+n-1$. In this case $\operatorname{dim} P_{f, n}(\widetilde{n})=n-$ -1 , since $P_{f, n}(\widetilde{n})$ is a part of the $(n-1)$-dimensional simplex δ^{n-1} spanned by the points $\{1,2, \ldots, n-1\}$, i.e. for each $i \in N$ the space $P_{f, n}\left(X_{i}\right)$ is finite-dimensional. Hence, $P_{f, n}(X)$ is a countable union of finitedimensional spaces. So $P_{f, n}(X) \in c \cdot d$. If X is a countable union of zero-dimensional spaces $\operatorname{dim} X_{i}=0$, then $\operatorname{dim} P_{f, n}\left(X_{i}\right)=n-1$ for each $i \in N$. In this case, $P_{f, n}(X)$ is also a countable union of finite-dimensional spaces, i.e. $P_{f, n}(X) \in c \cdot d$.Theorem is proved.

From the equation $P_{f}(X)=\bigcup_{n=1}^{\infty} P_{f, n}(X)$, in the particular case we have.
Corollary 1. If the compact X is a $c \cdot d$ space, then $P_{f}(X) \in c \cdot d$.
Let X be a finite-dimensional compact. Then the space $P_{f, n}(X)$ is also finite-dimensional. More accurately, $\operatorname{dim} P_{f, n}(X) \leqslant n \operatorname{dim} X+n-1=n(\operatorname{dim} X+1)-1$. On the other hand, there is an open and closed mapping decreasing dimension of spaces. Fibers of the mappings $r_{f, n}^{X}$ are similar cell, i.e. fibers are contractible to a point.

Theorem 2. Suppose $\varphi: X \rightarrow Y$ is a continuous surjective open mapping between the infinite compacts X and Y. Then the mapping $P_{f, n}(\varphi): P_{f, n}(X) \rightarrow P_{f, n}(Y)$ is also open.

Proof. Let X and Y be infinite compacts and let the mapping $\varphi: X \rightarrow Y$ be surjective and open. Then by the normality of the functor $P_{f, n}(\varphi)$ the mapping $P_{f, n}(\varphi)$ is surjective. In this case, we have the following commutative diagram

$$
\begin{array}{r}
P_{f, n}(X) \xrightarrow{P_{f, n}(\varphi)} P_{f, n}(Y) \\
\downarrow r_{f, n}^{X} \tag{3.1}\\
\downarrow\left(r_{f, n}^{Y}\right. \\
\delta(X)
\end{array} \longrightarrow[\delta(\varphi)] \delta(Y)
$$

where $\delta(X)$ and $\delta(Y)$ are Dirac measures on compacts X and Y. Let $\mu(x)=m_{1} \delta_{x_{1}^{0}}+m_{2} \delta_{x_{2}}+\ldots+$ $+m_{k} \delta_{x_{k}}, \quad r_{f, n}^{x}\left(\mu_{0}(X)\right)=\delta_{x_{1}^{0}}, \quad P_{f, n}(\varphi)\left(\mu_{0}(x)\right)=m_{1} \delta_{y_{1}^{0}}+m_{2} \delta_{y_{2}}+\ldots+m_{k} \delta_{y_{k}}$.

From the fact that the mapping $r_{f, n}^{x}, \delta(\varphi)$ is open and the diagram (3) is commutative, it follows that the mapping $P_{f, n}(\varphi)$ is open. Commutativity of diagram (3) follows from Lemma 2 of Uspensky's work [3]. Theorem 2 is proved.

Similarly as theorem 2 , one can proof the following.
Theorem 3. For infinite compacts X and Y a surjective map is open if and only if the map $P_{f}(\varphi)$: $P_{f}(X) \rightarrow P_{f}(Y)$ is open.

Corollary 2. If $X \in c \cdot d$, then $P_{n}(X) \in c \cdot d, P_{\omega}(X) \in c \cdot d$ and $P_{\omega}(X) \in A(N) R$.
Let X be a topological space and let $A \subset X . A$ set \mathscr{A} is called homotopy dense in X, if there is a homotopy $h: X \times[0,1] \rightarrow X$ such that $h(x, 0)=i d_{x}$ and $h:(X \times(0,1]) \subset A$. A set \mathscr{A} is called homotopy void if complement of \mathscr{A} is homotopy dense in X. The set $A \subset X$ is called the Z-set in X [4], if A is closed and for each cover $U \in \operatorname{cov}(X)$ there is a map $f: X \rightarrow X$ such that $\left(f, i d_{x}\right) \prec U$ and $f(X) \cap A=\emptyset$.

Theorem 4. For any infinite compact X and for each $n \in N$ the compact $P_{n}(X)$ is the $Z-$ set in $P_{\omega}(X)$.
Proof. By infinity of metric compact X the space $P_{\omega}(X)$ is convex and a locally convex metric space. So, $P_{\omega}(X) \in A(N) R$. On the other hand, the space is compact. It is obvious that $P_{n}(X)$ is a subspace
of $P_{\omega}(X)$, since the compact $P_{f, n}(X)$ is a subset of the compact $P_{n}(X)$. We fix a measure $\mu_{0}=\frac{1}{k} \delta_{x_{1}}+$ $+\frac{1}{k} \delta_{x_{2}}+\ldots+\frac{1}{k} \delta_{x_{k}}$.

Let $[0,1]$ is the unit interval. We construct a homotopy $h(\mu, t): P_{\omega}(X) \times[0,1] \rightarrow P_{\omega}(X)$ getting $h(\mu, t)=$ $=(1-t) \mu+t \mu_{0}$.

Obviously, $h(\mu, 0)=\mu$ i.e. $h(\mu, 0)=i d_{P_{\omega}(X)}$ and $h\left(P_{\omega}(X) \times(0,1]\right) \subset P_{\omega}(X) \backslash P_{n}(X)$. This means that $n \in N$ for any subspace $P_{\omega}(X) \backslash P_{n}(X)$ homotopically dense in $P_{\omega}(X)$. Then the set $P_{n}(X)$ is homotopically small in $P_{\omega}(X)$. Hence, by one of the results in [4], the subspace $P_{\omega}(X) \backslash P_{n}(X) \in A N R$ and $P_{\omega}(X) \backslash P_{n}(X)$ are $A N R$-spaces. In this case, from theorem 1.4.4. [4] it follows that $P_{\omega}(X)$ is the Z-set in $P_{\omega}(X)$. Theorem 4 is proved.

Lemma 1. For any infinite compact X each compact subset A of $P_{\omega}(X)$ is a Z-set, i.e. $P_{\omega}(X)$ has the compact Z-property.

Proof. Let X be an infinite compact, A is compact subset, i.e. $A \subset P_{\omega}(X)$. Consider the set $A \cap P_{n}(X)=$ $=A_{n}$. It's obvious that $P_{1}(X) \subset P_{2}(X) \subset \ldots \subset P_{n}(X) \subset \ldots$ By theorem 4 , the set is a $Z-$ set in $P_{\omega}(X)$ for each $n \in N$. Then $A=\bigcup_{n=1}^{\infty} A_{n}$ is $\sigma-Z$-set and is closed in $P_{\omega}(X)$. Then by one of the results in [4] A is a Z-set in $P_{\omega}(X)$. Lemma 1 is proved.

From Theorem 4 and Lemma 1, in particular, the cases arise.
Corollary 2. For any infinite compact X the followings hold:
a) The compact $P_{f, n}(X)$ is a Z-set in $P_{\omega}(X)$ for all $n \in N$.
b) The compact $P_{f}(X)$ is also Z-set in $P_{\omega}(X)$.

Corollary 3. For an arbitrary infinite compact X we have:
a) For each $n \in N$ the subspace $P_{\omega}(X) \backslash P_{f, n}(X)$ is an $A N R$ space μ homotopically dense in $P_{\omega}(X)$.
b) The subspace $P_{\omega}(X) \backslash P_{f, n}(X)$ is $A N R$ and homotopically dense in $P_{\omega}(X)$.

We say that X has strongly discrete approximation property (shortly, SDAP) if for every map $f: Q \times$ $\times N \rightarrow X$ and for every cover $U \in \operatorname{cov}(X)$ there exists a mapping $\bar{f}: Q \times N \rightarrow X$ such that $(\bar{f}, f) \prec U$ and the family $\{\bar{f}(Q \times\{n\})\}$ is discrete in X.

Let $\left\{x_{1}, x_{2}, \ldots, x_{n+1}\right\}$ be an $(n+1)$-point subset of the compact X. Fix the measure $\mu_{0}=\frac{1}{n+1} \delta_{x_{1}}+\frac{1}{n+1} \delta_{x_{2}}+$ $+\ldots+\frac{1}{n+1} \delta_{x_{n+1}}$. It is clear that $\mu_{0} \bar{\in} P_{n}(X)$ and $\mu_{0} \in P_{\omega}(X)$. We construct a homotopy $h(\mu, t): P_{\omega}(X) \times$ $\times[0,1] \rightarrow P_{\omega}(X)$ getting $h(\mu, t)=(1-t) \mu+t \mu_{0}$. It is known that $h(\mu, 0)=i d_{P_{\omega}(X)}$ and $h(\mu,(0,1]) \cap P_{n}(X)=$ $=\emptyset$. By the structure of the space $P_{\omega}(X)$ an by the definition of the homotopy this satisfies the condition of problem 10,1.4 of work [4], i.e. the set $P_{n}(X)$ is a strongly Z-set in.

Therefore, $P_{\omega}(X)$ is a strongly set and $P_{\omega}(X) \in A N R$, i.e. the following is true.
Theorem 5. For any infinite compact X the space $P_{\omega}(X)$ has strongly discrete approximation property, i.e. $P_{\omega}(X) \in S D A P$.

References

[1] Addis D.F., Gresham I.H. A class of infinite - dimensional spaces: Part I: Dimension theory and Alexandroff's problem. Fund. Math., 101 (1978), no. 3, pp.195-205. DOI: 10.4064/fm-101-3-195-205 [in English].
[2] Zhuraev T.F. Some geometrical properties of the functor P of probability measures: Candidate's thesis. M.: MGU, 1989, 90 p. [in Russian].
[3] Uspensky V.V. Topological groups and Dugundji's compacts. Mat. sb., 1989, Volume 180, Number 8, pp. 1092-1118. DOI: http://dx.doi.org/10.1070/SM1990v067n02ABEH002098 [in English].
[4] Banakh T, Radul T., Zarichnyi M. Absorbing sets in infinite - dimensional manifolds. Lviv: VNTL Publishers, 1996. URL: https://books.google.ru/books/about/Absorbing_sets_in_infinite_dimensional_m.html?id= $=$ NkrvAAAAMAAJ\&redir_esc=y [in English].
[5] Fedorchuk V.V., Filippov V.V. General topology. Basic constructions. Moscow: Moscow University Press, 1988, p. 252 [in Russian].
[6] Schepin E.V. Functors and uncountable powers of compacta. Russian Math. Surveys, $36: 3$ (1981), 3-62. DOI: http://dx.doi.org/10.1070/RM1981v036n03ABEH004247 [in English].
[7] Fedorchuk V.V. Probability measures in topology. Uspekhi Mat. Nauk, 1991, Volume 46, Issue 1(277), Pages 41-80. DOI: http://dx.doi.org/10.1070/RM1991v046n01ABEH002722 [in English].
[8] Borst P. Some remarks concerning C-spaces. Topology and its Applications, 2007, 154, pp. 665-674 [in English].
[9] Basmanov V.N. Covariant functors, retracts, and the dimension. Dokl. Akad. Nauk SSSR, 1983, 271, pp. 1033-1036 [in English].

Т.Ф. Жураев, А.Х. Рахматуллаев, З.О. Турсунова ${ }^{2}$

СВОЙСТВА ПОДФУНКТОРОВ ФУНКТОРА ВЕРОЯТНОСТНЫХ МЕР В КАТЕГОРИЯХ СОМР

Данная заметка посвящена сохранению подфункторами функтора P вероятностных мер пространств счетной размерности и экстензорным свойствам подпространств пространства вероятностных мер.

Ключевые слова: вероятностные меры, размерность, Z-множество, гомотопически плотно, сильное дискретное аппроксимационное свойство.

Цитирование. Zhuraev T.F., Rakhmatullaev A.Kh., Tursunova Z.O. Some values subfunctors of functor probalities measures in the categories Comp // Вестник Самарского университета. Естественнонаучная серия. 2018. T. 24. № 2. С. 28-32. DOI: http://doi.org/10.18287/2541-7525-2018-24-2-28-32.

MSC: 54B15, 54B30, 54B35, 54C05, 54C15, 54C60, 54D30.

Статья поступила в редакцию $23 / V / 2018$.
The article received $23 / V / 2018$.

[^1]
[^0]: ${ }^{1}$ (C) Zhuraev T.F., Rakhmatullaev A.Kh., Tursunova Z.O., 2018
 Zhuraev Tursunboy Faizievich (tursunzhuraev@mail.ru), Department of General Mathematics, Tashkent State Pedagogical University named after Nizami, 27, Bunyodkor Street, Tashkent, 100070, Republik of Uzbekistan.

 Rakhmatullaev Alimby Khasanovich (olimboy56@gmail.com), Department of Higher Mathematics, Tashkent Institute of Irrigation and Agricultural Mechanization Engineers, 39, Kari Niyazov Street, Tashkent, 100000, Republic of Uzbekistan.

 Tursunova Zulayho Omonullaevna (zulayhotursunova@mail.ru), Department of General Mathematics, Tashkent State Pedagogical University named after Nizami, 27, Bunyodkor Street, Tashkent, 100070, Republik of Uzbekistan.

[^1]: ${ }^{2}$ Жураев Турсунбой Файзиевич (tursunzhuraev@mail.ru), кафедра общей математики, Ташкентский государственный педагогический университет имени Низами, 100070, Республика Узбекистан, г. Ташкент, ул. Бунедкор, 27.

 Рахматуллаев Алимбай Хасанович (olimboy56@gmail.com), кафедра высшей математики, Ташкентский институт инженеров ирригации и механизации сельского хозяйства, 100000, Республика Узбекистан, г. Ташкент, ул. Кары-Ниязи, 39.

 Турсунова Зулайхо Омонуллаевна (zulayhotursunova@mail.ru), кафедра общей математики, Ташкентский государственный педагогический университет имени Низами, 100070, Республика Узбекистан, г. Ташкент, ул. Бунедкор, 27.

