Model and finite element methods for studing insulating lining of space module compartments

Cover Page

Cite item

Full Text

Abstract

At design of the space-rocket equipment the prediction problem of acoustic action on elements of the launch vehicle design and payload. The sources of such impact are the engines operating at the start and the incoming air flow acting on the launch vehicle at the start and on the active part of the flight in the earth's atmosphere. However, the solution of the problem, complications of the impossibility of testing in bench conditions. Check the adequacy of the selection process only when the launch vehicle. Therefore, it is important to develop a methodology for calculating the minimum sound insulation based on the physical parameters of the material and the geometric parameters of the structures. The calculation of these parameters was carried out on models of structures, in connection with which the proposed approach was called model. The simulation is carried out by the finite element method while simplifying the initial structure to a similar rigidity. The results were compared with experimental data.

 

About the authors

Pavel Popov

Samara University

Email: banduir@rambler.ru
Russian Federation

Aleksandr Kuznetsov

Samara University

Author for correspondence.
Email: al.vl.kuznetsov@mail.ru
Russian Federation

Aleksandr Igolkin

Samara University

Email: igolkin97@gmail.com
Russian Federation

Vilsur Murtazin

Samara University

Email: vilssur@yahoo.com
Russian Federation

References

  1. Nosatenko, P.Ya., Bobrov, A.V., Baranov, M.L., Shlyapnikov, A.N. (2010), “Eksperimental'noe opredelenie akusticheskih nagruzok pri puskah RN “Strela” i raschyotnoe opredelenie rezhimov ehksperimental'noj otrabotki vyvodimyh kosmicheskih apparatov” , Vestnik SGAU, no. 2, pp. 112-123.
  2. Popov, P.A., Belov A.S., Kryuchkov, A.N. (2012), “Matematicheskaya model' issledovaniya normal'nyh akusticheskih mod otsekov rakety-nositelya” , Vestnik SGAU, no. 4, pp. 176-183.
  3. Popov, P.A., Sindyukov, A.A., Osipov, A.S. (2014), “Raschyot zvukoizolyacii mnogoslojnoj konstrukcii na osnove metoda “obratnoj matricy” , Vestnik SGAU, no. 3, pp. 53-60.
  4. Roibás, E., Chimeno, M., López-Díez, J., Simón, F. (2013), “A mode count procedure for mid-frequency analysis of complex vibro-acoustic systems”, Aerospace Science and Technology, no. 29, pp. 165-174.
  5. Shenderov, E.L. (1972), Volnovye zadachi gidroakustiki , Sudostroyeniye, Leningrad, Russia, 352 p.
  6. Munin, A.G. (1986), “Aviatsionnaya akustika. Shum v salonakh passazhirskikh samoletov” , Mashinostroyeniye, Moscow, Russia, vol. 2, 264 p.
  7. “Eksperimental'noye opredeleniye zvukoizolyatsii mezhbakovogo otseka bloka III stupeni RN “Soyuz” , NTO, Scien-tific and Technical Report, Inventory no. 5535, TsAGI, 1999, 38 p.
  8. Bogolepov, I.I. (1986), “Promishlennaya zvukoizolyatsiya” , Sudostroyeniye, Len-ingrad, Russia, 367 p.
  9. Zverev, A.Ya. (2017), “Opredeleniye sravnitel'noy effektivnosti zvukopogloshchayushchikh materialov v laboratornykh usloviyakh i na samolote” , TsAGI, Moscow, Russia, pp. 209-210.
  10. “Opredeleniye vibroakusticheskikh kharakteristik fragmentov konstruktsii golovnogo obtekatelya RN “Soyuz” , NTO, Scientific and Technical Report, Inventory no. 5527, TsAGI, 1999, 34 p.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Павел Александрович Попов, Александр Владимирович Кузнецов, Александр Алексеевич Иголкин, Вильсур Маратович Муртазин

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Свидетельство о регистрации СМИ, 16+

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies