СИММЕТРИЧНАЯ ФИНИТНАЯ ПРЕДСТАВИМОСТЬ ℓp В ПРОСТРАНСТВАХ ОРЛИЧА

Обложка


Цитировать

Полный текст

Аннотация

Хорошо известно, что банахово пространство может не содержать подпространств, изоморфных хотя бы одному из пространств ℓp (1 6 p < ∞) или c0 (это было показано Цирельсоном в 1974 г.). В то же время по известной теореме Кривина каждое банахово пространство X всегда содержит хотя бы одно из этих пространств локально, т. е. существуют конечномерные подпространства в X сколь угодно большой размерности n, изоморфны (равномерно) ℓnp для некоторых 1 6 p < ∞ или cn0 . В этом случае говорят, что ℓp (соответственно c0) финитно представимо в X. Основная цель этой статьи — дать характеризацию (с полным доказательством) множества тех p, что ℓp симметрично финитно представимо в любом сепарабельном пространстве Орлича.

Полный текст

Introduction

While a Banach space X need not contain any subspace isomorphic to a space p (1 p < ) or c0 (as was shown by Tsirel’son in [1]), it will always contain at least one of these spaces locally. This means that there exist finite-dimensional subsets of X of arbitrarily large dimension n which are isomorphic (uniformly)

p

 

to n

0

 

for some 1 p < or cn. This fact is the content of the famous result proved by Krivine in [2]

(see also [3]). To state it we need some definitions.

i=1

 

Suppose X is a Banach space, 1 p , and {zi}

is a bounded sequence in X. The space p is said

i=1

 

to be block finitely representable in {zi}

if for every n N and ε > 0 there exist 0 = m0 < m1 < . . . < mn

i=mk1 +1

 

and αi R such that the vectors uk = mk

αizi, k = 1, 2, . . . , n, satisfy the inequality

1 n 1

(1 + ε)1ap 1 ak uk 1

(1 + ε)ap

k=1

 

for arbitrary a = (ak )n

Rn. In what follows,

1 1

1 k=1 1X

ap :=

( n

 

|ak|p

k=1

)1/p

if p < , and a

 

:= max

k=1,2,...,n

|ak|

The space p, 1 p , is said to be finitely representable in X if for every n N and ε > 0 there exist

k=1

 

x1, x2, . . . , xn X such that for any a = (ak )n

Rn

1 n 1

(1 + ε)1ap 1 ak xk 1

(1 + ε)ap

1 1

image

1 k=1 1X

1The work was completed as a part of the implementation of the development program of the Scientific and Educational Mathematical Center the Volga Federal District, agreement no. 075-02-2021-1393.

Astashkin S.V. Symmetric finite representability of p in Orlicz spaces

image

16 Асташкин С.В. Симметричная финитная представимость p в пространствах Орлича

 

(alternatively, in the case p = , one might say that c0 is finitely representable in X).

i=1

 

Clearly, if p is block finitely representable in some sequence {zi}

X, then p is finitely representable

in X

. Therefore, the following famous result proved by Krivine in [2] (see also [3] and [4, Theorem 11.3.9])

implies the finite representability of p for some 1 p in any Banach space.

Theorem (Krivine)

i=1

 

Let {zi}

be an arbitrary normalized sequence in a Banach space X such that the vectors zi do not

form a relatively compact set. Then p

i=1

 

is block finitely representable in {zi}for some p [1, ].

Here, we consider both Orlicz sequence and function spaces (see the next section for the definition) and in the separable case we give a characterization of the set of p such that p is symmetrically finitely representable in such a space. To introduce the notion of symmetric finite representability, we need some more definitions.

k=1

 

A sequence y = (yk )

k=1

 

will be called a copy of a sequence x = (xk )

if x and y have the same entries,

that is, there is a permutation π of the set of positive integers such that yπ(k) = xk for all k = 1, 2, . . ..

Given a measurable function x(t) on [0, 1], we set

nx(τ ) := m({t [0, α) : |x(t)| > τ }), τ > 0.

Here and in the sequel, m denotes the Lebesgue measure. Functions x(t) and y(t) are called equimeasurable

if nx(τ ) = ny (τ ) for each τ > 0.

Let X be a symmetric sequence space (see e.g. [5]), 1 p . We say that p is symmetrically finitely representable in X if for every n N and each ε > 0 there exists an element x0 X such that for its

k=1

 

disjoint copies xk , k = 1, 2, . . . , n, and for every (ak )n

Rn we have

1 n 1

(1 + ε)1ap 1 ak xk 1

(1 + ε)ap

1 1

1 k=1 1X

Similar notion will be defined also in the function case. Let X be a symmetric function space on [0, 1]

[5]. The space p is symmetrically finitely representable in X if for every n N and ε > 0 there exist

k=1

 

equimeasurable and disjointly supported on [0, 1] functions ui(t), i = 1, 2, . . . , n, such that for all (ak )n

Rn

n

1

(1 ε)ap

 

1

1

i=1

1

 

aiui1

1X

(1 + ε)ap

The set of all p [1, ] such that p is symmetrically finitely representable in X (in both sequence and function cases) we will denote by F (X).

N

 

From the definition2 of the Matuszewska-Orlicz indices α0

N

 

and β0

N

 

(resp. α

N

 

and β) of an Orlicz

sequence space N (resp. an Orlicz function space LN ) it follows that F (X) [α0 , β0 ] (resp. F (X)

N N

[αN , βN ]). The main purpose of this paper is to give a detailed proof of the opposite embedding for both

∞ ∞

Orlicz sequence and function spaces. To this end, following the idea mentioned in [6, p. 140–141] we will make use of the proof of Theorem 4.a.9 from [7].

Similar problems for Orlicz function spaces (and more generally symmetric spaces) on (0, ) were

considered in the paper [8].

 

  1. Preliminaries

    1. Orlicz sequence spaces

      A detailed information related to Orlicz sequence and function spaces see in monographs [9–11].

      The Orlicz sequence spaces are a natural generalization of the p-spaces, 1 p , which equipped

      with the usual norms

       

      (

       

      p 1/p

      k=1|ak| )

      , 1 p <

      ap :=

      sup

      k=1,2,...

      |ak| , p = . .

      Let N be an Orlicz function, that is, an increasing convex continuous function on [0, ) such that N (0) =

      k=1

       

      = 0 and limt→∞ N (t) = . The Orlicz sequence space N consists of all sequences a = (ak )

      , for which

      the following (Luxemburg) norm

       

      image

      2See the next section.

       

      aN := inf

      {

      u > 0 :

       

       

      k=1

      }

       

      N ( |ak| ) 1

      u

      Вестник Самарского университета. Естественнонаучная серия. 2020. Том 26, № 4. С. 15–24

      Vestnik of Samara University. Natural Science Series. 2020, vol. 26, no. 4, pp. 15–24 17

       

      is finite. Without loss of generality, we will assume that N (1) = 1. In particular, if N (t) = tp, we get the

      p-space, 1 p < .

      N

       

      Recall that the Matuszewska-Orlicz indices (at zero) α0

      p

      N

       

      and β0

      of an Orlicz function N are defined by

      p

      α0

       

      N := sup {p : sup

      x,y:s1

      N (x)y

      N (xy)

      N

       

      < }, β0

      := inf {p : inf

      x,y:s1

      N (x)y

      N (xy)

      > 0}.

      N

       

      It can be easily checked that 1 α0

      N

       

      β0

      . It is well known also that an Orlicz sequence space N is

      N

       

      separable if and only if β0

      < , or equivalently, if the function N satisfies the 2-condition at zero, i.e.,

      N (2u)

      lim sup

      u0

       

      image

      N (u)

      < .

      k=1

       

      The subset hN of an Orlicz sequence space N consists of all (ak )

      N such that

      image

      ( a )

       

      N | k| < for each u > 0.

      u

      k=1

      One can easily check (see also [7, Proposition 4.a.2]) that hN is a separable closed subspace of N and

      the canonical unit vectors en = (ei ) such that en = 1 and ei

      = 0 if i ̸= n, n = 1, 2, . . ., form a symmetric

      n n n

      basis of the space

      n=1

       

      hN . Recall that a basis {xn}

      of a Banach space X is said to be symmetric if there

      exists

      C > 0 such that for any permutation π of the set of positive integers and all an R we have

      ∞ ∞

      C11

       

      1

       

      1

       

      1 1 1

      1

       

       

      1

       

      1

       

      1 1 1

      1

      n=1

      anxn1X 1

       

      n=1

      anxπ(n)1X C1

       

      n=1

      anxn1X .

      Observe that the definition of an Orlicz sequence space N is determined (up to equivalence of norms) by the behaviour of the function N near zero. More precisely, the following conditions are equivalent: 1) N = M (with equivalence of norms); 2) the canonical vector bases of the spaces hN и hM are equivalent; 3) there are constants C > 0, c > 0 and t0 > 0 such that for all 0 t t0 it holds

      cN (C1t) M (t) c1N (Ct)

      (see e.g. [7, Proposition 4.a.5] or [11, Theorem 3.4]). In particular, if N is a degenerate Orlicz function, i. e., for some t0 > 0 we have N (t) = 0 if 0 t t0, then N = l(with equivalence of norms).

      image

      2

       

      Given Orlicz function N , we define the following subsets of the space C[0, 1 ]:

       

      image

      E0 { N (xy) 0 0

       

      and

      N,a :=

      : 0 < y < a}, EN :=

      N (y)

       

      0<a<1

      EN,a

      image

      N,a := convEN,a, CN :=

      CN,a,

      C0 0

      0 0

      0<a<1

      image

      image

      2

       

      2

       

      where 0 < a < 1 and the closure is taken in the norm topology of C[0, 1 ]. All these sets are non-void norm compact subsets of the space C[0, 1 ] [7, Lemma 4.a.6]. It is well known that they determine to a large extent

      the structure of disjoint sequences of Orlicz sequence spaces (see [7, § 4.a] and [12]). Moreover, if 1 p < ,

      then tp C0

      if and only if p [α0 , β0 ] [7, Theorem 4.a.9].

      N N N

      N satisfies the 2-condition at zero, the sets E0

      , E0 , C0

      and

      In the case when an Orlicz function

      C0

      N,a N

      N,a

      N can be considered as subsets of the space C[0, 1] (see the remark after Lemma 4.a.6 in [7]).

       

    2. Orlicz function spaces

      Let N be an Orlicz function such that N (1) = 1. Denote by LN the Orlicz space on [0, 1] endowed with the Luxemburg norm

      xLN := inf{u > 0 :

      1

      N ( |x(t)| )

      u

      0

      dt 1}.

      In particular, if N (t) = tp, 1 p < , we obtain the space Lp = Lp[0, 1] with the usual norm.

      N

       

      The Matuszewska-Orlicz indices α

      N

       

      and β

      (at infinity) of an Orlicz function N are defined by the

      formulae

      α

       

      N = sup {p : sup

      image

      N (x)yp

      <

       

       

       

      }, βN = inf

      {

       

      N (x)yp

      p : inf

      > 0}.

      x,y?:1

      N (xy)

      x,y?:1

      N (xy)

      Astashkin S.V. Symmetric finite representability of p in Orlicz spaces

      image

      18 Асташкин С.В. Симметричная финитная представимость p в пространствах Орлича

       

      Again 1 αβ. As in the case of sequence spaces, an Orlicz space LN is separable if and only

      N N

      β

      if N < , or equivalently, if the function N satisfies the 2-condition at infinity, i.e.,

      N (2u)

      lim sup

      u→∞

       

      image

      N (u)

      < .

      In contrast to the sequence case, the definition of an Orlicz function space LN on [0, 1] is determined (up to equivalence of norms) by the behaviour of the function N (t) for large values of t.

      image

      2

       

      For every Orlicz function N we define the following subsets of the space C[0, 1 ]:

       

      image

      E

       

      N,A :=

      { N (xy) : y > A}, E =

      N (y)

      E

      image

      , C := convE,

      N

      A>0

      N,A N N

      image

      image

      2

       

      2

       

      where the closure is taken in the norm topology of C[0, 1 ]. Again all these sets are non-void norm compact subsets of the space C[0, 1 ] and they determine largely the structure of disjoint sequences in Orlicz function

      spaces (see [12, Propositions 3 and 4]). Moreover, if 1 p < , then tp C

      if and only if p [α, β]

      [12].

      N N N

      N,A

       

      Finally, if an Orlicz function N satisfies the 2-condition at infinity, the sets E

      N

       

      , E

      N

       

      and C

      can

      be considered as subsets of the space C[0, 1].

       

  2. Symmetric finite representability of p in Orlicz sequence spaces

    Theorem 1

     

    Let M be an Orlicz function satisfying the 2-condition at zero. Then p is symmetrically finitely representable in the Orlicz sequence space M if and only if p [α0 , β0 ], i.e., F (M ) = [α0 , β0 ].

    Proof.

    M M M M

    As was observed in § 1, we always have F (M ) [α0 , β0 ]. Therefore, it suffices to prove only the opposite

    M M

    M

     

    embedding. In other words, we need to show that for every p [α0 ,

    M

     

    β0 ], m N and each ε > 0 there exists

    k=1

     

    an element x0 M such that for its disjoint copies xk , k = 1, 2, . . . , m, and for every c = (ck )m

    Rn we

    have

    1 m 1

    (1 + ε)1cp 1 ck xk 1

    (1 + ε)cp. (1)

    1

    1 k=1

    1

    1M

    M

     

    According to the proof of Theorem 4.a.9 in [7] and a comment followed this proof on p. 144, tp C0

    (see also § 2.1). Since

    M

     

    M satisfies the 2-condition at zero, the set C0

    may be considered as a subset of the

    M

     

    space C[0, 1] (see the remark after Lemma 4.a.6 in [7] or again § 2.1). Therefore, since C0

    :=

    0<a<1

    C

     

    0

     

    M,a,

    M,2n

     

    we conclude that tp C0

    Note that the mapping

    for each n N.

    λ 1→ Mλ(t) := M (λt)/M (λ) (2)

    M,2n

     

    is continuous from In := (0, 2n] into the subset E0

    of C[0, 1]. Indeed, as it is well known (see e.g. [9,

    Theorem 1.1]),

    M (t) =

    t

    ρ(s) ds, (3)

    0

    where ρ is a nondecreasing right-continuous function.

    Therefore, for arbitrary λ2 > λ1 > 0 and all 0 t 1 we have

    M (λ1)M (λ2t) M (λ2)M (λ1t)|

    |Mλ2 (t) Mλ1 (t)| = |

    1

    M (λ1)M (λ2)

    (M (λ2t) M (λ1t) + M (λ2) M (λ1))

    image

    M (λ2)

    1

    image

    M (λ2)

    ( λ2 t λ1 t

     

    ρ(s) ds +

    λ2 λ1

     

    ρ(s) ds)

    image

    2ρ(λ2) (λ

    M (λ2) 2

    λ1).

    Thus, mapping (2) may be extended uniquely to a map ω 1→ Mω from the Stone-C˘ ech compactification βIn

    M,2n1

     

    of In onto the set E0

    M,2n

     

    . Since tp C0

    M,2n

     

    and the extreme points of C0

    are contained in the

    Вестник Самарского университета. Естественнонаучная серия. 2020. Том 26, № 4. С. 15–24

    Vestnik of Samara University. Natural Science Series. 2020, vol. 26, no. 4, pp. 15–24 19

     

    M,2n

     

    compact set E0

    , by the Krein-Milman theorem (see e.g. [13, Theorem 3.28]), there exists a probability

    measure µn on the set βIn such that

     

    tp =

     

    Let us show that

     

     

    βIn

     

    Mω (t) n(ω), 0 t 1. (4)

    for some probability measure νn on In we have

    2n

    p

     

    n

     

     

     

     

    t

    0

    Mλ(t) n(λ) < 2

    , 0 t 1. (5)

    First, the fact that the set Qn := Q In (Q is the set of rationals) is dense in βIn implies that the set

    k=1

     

    {Mr , r Qn} is dense in the subset {Mω , ω βIn} of C[0, 1]. Consequently, putting Qn = {rk}

    and

    n

     

    Ek := {ω βIn : |Mω (t) Mrk (t)| < 2

    for all 0 t 1}, (6)

    k=1

     

    we have βIn =

    k=1

     

    Ek . Now, if Fm := Em \ (m1 Ek ), m = 1, 2, . . ., then Fm are pairwise disjoint and

     

    βIn = m=1Fm. Define the measure νn on σ-algebra of Borel subsets U of the interval In by

    νn(U ) :=

    {k: rk U}

    where µn is the probability measure from (4). Since

    µn(Fk ),

    νn(In) = µn(Fk ) = µn(βIn) = 1,

    k=1

    then νn is a probability measure on In. Moreover, by (4) and (6), for all 0 t 1

     

    p

     

     

    t

    2n

    0

     

    Mλ(t) n(λ) =

     

     

    βIn

    Mω (t) n(ω)

    n

     

    2

     

    0

     

    Mλ(t) n(λ)

     

     

    M

     

    k=1 Fk

    ω (t) n(ω)

    {rk }

    Mλ(t) n(λ)

     

     

    n

     

    k=1

    {rk }

    (Mλ(t) + 2

    ) n(λ)

    {rk }

    Mλ(t) n(λ)

     

     

    and inequality (5) is proved.

    2n νn({rk}) = 2nνn(In) = 2n1,

    k=1

    Next, for any s (0, 1) and n, j N we set

     

    aj,n :=

     

    sj1 2n

     

    n(λ)

     

    . (7)

     

    Then, by inequality (5), we have

    sj 2n

     

    M (λ)

    [aj,n]M (sj 2nt) 2n < tp < [aj,n]M (sj12nt) + M (t)2n/(1 s) + 2n,

    j=1

    j=1

    where by [z] we denote the integer part of a real number z. Choosing now kn such that

     

    as M (t) M (1) = 1, we get

     

    j=kn +1

    [aj,n]M (sj12n) < 2n,

     

    where

    Fn(st) 2n+1 < tp < Fn(t) + 2n/(1 s) + 2n+1, 0 t 1, (8)

     

    kn

    Fn(t) := [aj,n]M (sj12nt). (9)

    j=1

    Astashkin S.V. Symmetric finite representability of p in Orlicz spaces

    image

    20 Асташкин С.В. Симметричная финитная представимость p в пространствах Орлича

     

    Since the right derivative ρ of M (see (3)) is a nondecreasing function and 0 < s < 1, from (7) it follows that

    Fn(t) Fn(st)

    kn

    aj,n(M (sj12nt) M (sj 2nt))

    j=1

    k

    image

    n

     

    2

    nsj1(1 s)ρ(sj12

    n) s

    j1 2n

     

    n

     

    (λ).

     

    Furthermore, the estimate

    j=1

     

    2x

    M (sj 2n)

    sj 2n

    F (2x) ;;:

    x

    ρ(s) ds ;;: (x), 0 x 1,

    combined with the hypothesis that M satisfies the 2-condition at zero, shows that

    (x)

     

    Hence,

    image

    K := sup

    0<x:s1 M (x)

    < .

    j1 n

     

    kn M (sj12n) s 2

     

    n n

     

    F (t) F (st) K(1 s)

    M (sj 2n)

     

    sj 2n

    n(λ).

    j=1

    M

     

    Moreover, one can readily check that the upper Matuszewska-Orlicz index β0

     

    is finite (see also § 2.1) and,

    by its definition, for each q > βM there is a constant c0 > 0 such that

    M (sj 2n) ;;: c0M (sj12n)sq .

    As a result, since νn is a probability measure, we conclude

    kn sj1 2n

    0

     

    Fn(t) Fn(st) K(1 s)sq c1

    j=1

     

    sj 2n

    0

     

    n(λ) K(1 s)sq c1. (10)

    Let m N and ε > 0 be arbitrary. Choose and fix s (0, 1) so that

    0

     

    K(1 s)sq c1 < ε/(2m). (11)

    Then, from (8) and (10) it follows

    ε

     

    n+1

     

    n+1 p

    image

    Fn(t) 2m 2

    Now, taking n N satisfying the inequality

    < Fn(st) 2

     

    2n

    < t , 0 t 1. (12)

     

    from (8) and (12), we obtain

    1 s ε p

    image

    image

    + 2n+1 < ε

    2m

     

    ε

    , (13)

    Fn(t) m < t

    Therefore, for any ci [0, 1], i = 1, 2, . . . , m,

    < Fn(t) + m, 0 t 1. (14)

     

    k=1

     

    whence for all c = (ck )n

    m

    cp

     

    i ε <

    i=1

    Rn, ck ;;: 0,

    m

     

    i=1

     

    Fn(ci) <

    m

     

    i=1

    i

     

    cp + ε,

    m

    1 ε < Fn

    ( ci

    )

    image

    < 1 + ε.

    i=1

    cp

    Moreover, since Fn is a convex function, from the latter inequality it follows that

    m

    Fn

    ( ci )

    image

    1

     

    and

    i=1

     

    m

    Fn

    i=1

    (1 + ε)cp

    ( ci )

    image

    (1 ε)cp

     

    > 1.

    Вестник Самарского университета. Естественнонаучная серия. 2020. Том 26, № 4. С. 15–24

    Vestnik of Samara University. Natural Science Series. 2020, vol. 26, no. 4, pp. 15–24 21

     

    k=1

     

    Therefore, by the definition of the norm in an Orlicz sequence space, for every m N and all c = (ck )n

    Rn

    we have

    m

    1

    (1 ε)cp

     

    1

    1

    i=1

    1

     

    ciei1

    1Fn

    (1 + ε)cp, (15)

    where ei, i = 1, 2, . . ., are the canonical unit vectors in Fn .

    Given m N and ε > 0, select s and n to satisfy (11) and (13). For any i = 1, 2, . . . , m and j = 1, 2, . . . , kn

    j,n

     

    denote by Ai

    j,n

     

    pairwise disjoint subsets of positive integers such that card Ai

    kn

    = [aj,n]. Then, the vectors

    ui := 2n sj1

    ek , i = 1, 2, . . . , m,

    j=1

    kA

     

    i j,n

    are copies of an element from lm. Moreover, by formula (9), we have

    m

    1

     

    1

    1

    i=1

    1

    ciui1

    1M

    m

    1

     

    = 1

    1

    i=1

    1

    ciei1

    1Fn

    for all ci R. Combining this with (15), we get (1), which completes the proof.

     

  3. Symmetric finite representability of p in Orlicz function spaces

Theorem 2

 

Let M be an Orlicz function satisfying 2-condition at infinity. Then p is symmetrically finitely representable in the Orlicz function space LM if and only if p [α , β], i.e., F (LM ) = [α , β].

Proof.

M M M M

As in the sequence case, we need only to prove the embedding [α , β] ⊂ F (LM ). More precisely, we

M M

M

 

M

 

have to check that for every p [α , β

], m N and each ε > 0 there exist equimeasurable and disjointly

supported functions

k=1

 

uk , k = 1, 2, . . . , m, satisfying for all c = (ck )m

Rm the inequality:

1 m 1

(1 + ε)1cp 1 ck uk 1

(1 + ε)cp (16)

1

1 k=1

1

1LM

M

 

First, tp C C[0, 1] and then the same reasoning as in the proof of Theorem 1 shows that and that for every n N there is a probabilistic measure νn on [2n, ) such that for all t [0, 1]

p

 

 

t

M (λt)

 

 

n(λ) < 2n.

 

For any s > 1 and n, j N we define

2n M (λ)

j n

 

s 2

n(λ)

Then, by the preceding inequality,

aj,n :=

sj1 2n

.

M (λ)

 

aj,nM (sj12nt) 2n < tp < aj,nM (sj 2nt) + 2n.

j=1

Next, as M satisfies the 2-condition at infinity, we have

j=1

M (sj 2nt) (1 + 2n)M (sj12nt)

for all j N and t [0, 1] whenever s is sufficiently close to 1. Fixing such a s, we get

∞ ∞

aj,nM (sj12nt) 2n < tp < (1 + 2n)aj,nM (sj12nt) + 2n.

j=1

Combining this inequality with the estimate

j=1

 

we deduce

2n aj,nM (sj12nt) < 22n + 2ntp < 2n+1, 0 t 1,

j=1

∞ ∞

aj,nM (sj12nt) 2n < tp < aj,nM (sj12nt) + 2n+2. (17)

j=1

j=1

Astashkin S.V. Symmetric finite representability of p in Orlicz spaces

image

22 Асташкин С.В. Симметричная финитная представимость p в пространствах Орлича

 

On the other hand, since M (u) ;;: u for all u ;;: 1, we have

2 n

 

j+1

 

which implies that

aj,n M (2nsj1 2 s ,

∞ ∞ s

aj,n 2n sj+1 = 2n+1 ·

.

image

s 1

j=1

j=1

Let m N and ε > 0 be arbitrary. Fix n so that

2n+1s 1

<

image

image

s 1 m

and 2n+2m < ε. (18)

j

 

The first of the inequalities (18) allows us to take pairwise disjoint sets Ei [0, 1], j N, i = 1, 2, . . . , m,

j

 

with m(Ei ) = aj,n. Then, the functions

 

E

 

ui := 2nsj1χ i

j

j=1

are equimeasurable and disjointly supported on [0, 1]. Moreover, for all ci R

1 ( m

) m

M ciui(t)

dt = M (2nsj1|ci|)aj,n.

 

0

 

i=1

i=1 j=1

Therefore, by (17) and the second inequality in (18), we get

 

m

|ci|pε <

 

1

M

m

(

ciu

)

i(t) dt

m

<

i=1

   

 

i=1

 

i=1

 

|ci|p + ε.

0

Repeating further the arguments from the end of the proof of Theorem 1, we come to (16) and so complete the proof.

×

Об авторах

С. В. Асташкин

Самарский национальный исследовательский университет имени академика С.П. Королева

Автор, ответственный за переписку.
Email: astash56@mail.ru
ORCID iD: 0000-0002-8239-5661

доктор физико-математических наук, профессор, заведующий кафедрой функционального анализа и теории функций

Россия

Список литературы

  1. [1] Цирельсон Б.С. Не в любое банахово пространство можно вложить ℓp или c0 // Функц. анал. и его прил. 1974. Т. 8, №˜2. С. 57–60. URL: http://mi.mathnet.ru/faa2331.
  2. [2] Krivine J.L. Sous-espaces de dimension finie des espaces de Banach r´eticul´es // Annals of Mathematics. 1976. Vol. 104, № 2. P. 1–29. URL: https://www.irif.fr/krivine/articles/Espaces_reticules.pdf.
  3. [3] Rosenthal H.P. On a theorem of J.L. Krivine concerning block finite representability of ℓp in general Banach spaces // Journal of Functional Analysis. 1978. Vol. 28. P. 197–225. DOI: http://dx.doi.org/10.1016/0022-1236(78)90086-1.
  4. [4] Albiac F., Kalton N.J. Topics in Banach Space Theory. Graduate Texts in Mathematics 233. New York: Springer-Verlag, 2006. 373 p. URL: http://dx.doi.org/10.1007/0-387-28142-8.
  5. [5] Крейн С.Г., Петунин Ю.И., Семенов Е.М. Интерполяция линейных операторов. Москва: Наука, 1978. 400 с. URL: https://elibrary.ru/item.asp?id=21722209; https://booksee.org/book/577975.
  6. [6] Lindenstrauss J., Tzafriri L. Classical Banach Spaces, II. Function Spaces. Berlin, Heidelberg, New York: Springer-Verlag, 1979. 243 p. URL: https://1lib.education/book/2307307/8b833b?dsource=recommend.
  7. [7] Lindenstrauss J., Tzafriri L. Classical Banach Spaces, I. Sequence Spaces. Berlin-New York: Springer-Verlag, 1977. 190 p. URL: https://1lib.education/book/2264754/01841c?dsource=recommend.
  8. [8] Асташкин С.В. О финитной представимости ℓp-пространств в перестановочно инвариантных пространствах // Алгебра и анализ. 2011. Т. 23, № 2. С. 77–101. URL: http://mi.mathnet.ru/aa1235
  9. [9] Красносельский М.А., Рутицкий Я.Б. Выпуклые функции и пространства Орлича. Москва: Гос. изд-во физ.-мат. лит., 1958. 271 с. URL: https://1lib.education/book/2078048/983381?id=2078048&secret=983381.
  10. [10] Rao M.M., Ren Z.D. Theory of Orlicz spaces. Monographs and Textbooks in Pure and Applied Mathematics, vol. 146 - Marcel Dekker Inc., New York, 1991. 445 p.
  11. [11] Maligranda L. Orlicz Spaces and Interpolation. Seminars in Mathematics 5. Campinas: University of Campinas, 1989. 206 p.
  12. [12] Lindenstrauss Y., Tzafriri L. On Orlicz sequence spaces. III // Israel Journal of Mathematics. 1973. Vol. 14. P. 368–389. DOI: https://doi.org/10.1007/BF02771656.
  13. [13] Рудин У. Функциональный анализ. Москва: Мир, 1975. 443 с. URL: https://www.nehudlit.ru/books/funktsionalnyy-analiz.html.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Асташкин С.В., 2021

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах