STUDYING THE CRACK DISTRIBUTION BY THE MOLECULAR DYNAMICS METHOD IN A COPPER PLATE



Cite item

Full Text

Abstract

Using the method of molecular dynamics, the process of crack propagation in a single-crystal copper plate with a crack is simulated under the action of mixed loading corresponding to normal separation and transverse shear. A comprehensive study of the influence of geometric characteristics (model dimensions, crack length), temperature, strain rate and loading mixing parameter on the plate strength, crack growth and direction was carried out. The angles of propagation of a central crack in a copper plate are determined using the molecular dynamics method.

About the authors

O. N. Belova

Samara National Research University

Author for correspondence.
Email: morenov@ssau.ru
ORCID iD: 0000-0002-4492-223X

postgraduate student of the Department of Mathematical Modelling in Mechanics

L. V. Stepanova

Samara National Research University

Email: morenov@ssau.ru
ORCID iD: 0000-0002-6693-3132

Doctor of Physical and Mathematical Sciences, professor of the Department of Mathematical Modelling in Mechanics

References

  1. Chaplygin Ju.A. Nanotekhnologii v elektronike-3.1. . M.: Tekhnosfera, 2016, 480 p. Available at: https://www.studmed.ru/chaplygin-yua-red-nanotehnologii-v-elektronike_86392d1cee7.html .
  2. Griffith А.А. The phenomenon of rupture and flow in solids. Phil. Trans. Roy., 1921, Vol. 221, pp. 163–198.
  3. doi: 10.1098/rsta.1921.0006 .
  4. Westergaard H.M. Bearing pressures on cracks. ASTM Trans. J. Appl. Mech., 1939, Vol. 6, pp. A49–A53 .
  5. Sneddon I.N. The distribution of stress in the neighborhood of a crack in an elastic solid. Proc. Roy. Soc. Ser. A, 1946, Vol. 187, pp. 229–260. DOI: https://doi.org/10.1098/rspa.1946.0077 .
  6. Irwin G.R. Fracture Dynamics, Fracturing of Metals. American Society for Metals, Cleveland, 1946, 147–166 .
  7. Orowan E. Energy criteria of fracture. Weld. Res. Suppl., 1955, Vol. 20, p. 1575 .
  8. Chandra S., Kumar N.N., Samal M.K., Chavan V.M., Patel R.J. Molecular dynamics simulations of crack growth behavior in Al in the presence of vacancies. Computational Materials Science, 2016, Volume 117, pp. 518–526. doi: 10.1016/j.commatsci.2016.02.032 .
  9. Morandi M., Farrahi G.H., Chamani M. Effect of microstructure on crack behavior in nanocrystalline nickel using molecular dynamics simulation. Theoretical and Applied fracture Mechanics, 2019, Volume 104, p. 102390. doi: 10.1016/j.tafmec.2019.102390 .
  10. Te-Hua Fang, Chien-Yu Shen, Yu-Cheng Fan, Win-Jin Chang. Fracture characteristics of silicene nanosheet with a crack under tension estimated using molecular dynamics simulation. Superlattice and Microstructures, 2019, Volume 129, pp. 124–129. doi: 10.1016/j.spmi.2019.03.021 .
  11. Jinchun Yao, Yuxuan Xia, Shuhong Dong, Peishi Yu, Jun-Hua Zhao. Finite element analysis and molecular dynamics simulations of nanoscale crack-hole interactions in chiral graphene nanoribbons. Engineering Fracture Mechanics, 2019, Volume 218, p. 106571. doi: 10.1016/j.engfracmech.2019.106571 .
  12. Sanjib C. Chowdhury, Ethan Wise, Raja Ganesh, John W. Gillespie Jr. Effects of surface crack on the mechanical properties of Silica: A molecular dynamics simulation study. Engineering Fracture Mechanics, 2019, Volume 207, pp. 99–108. doi: 10.1016/j.engfracmech.2018.12.025 .
  13. Naiyer Razmara, Roghayeh Mohammdzadeh. Effect of nitrogen content on the crack growth behavior in the Fe-N alloy at high temperatures via molecular dynamics simulations. Theoretical and Applied Fracture Mechanics, 2018, Volume 97, pp. 30–37. doi: 10.1016/j.tafmec.2018.07.007 .
  14. Wei Fang, Hongxian Xie, Fuxing Yin, Jia Li, Dil Faraz Khan, Oian Fang. Molecular dynamics simulation of grain boundary geometry on crack propagation of bi-crystal aluminum. Materials Science and Engineering, 2016, Volume 666, pp. 314–319. doi: 10.1016/j.msea.2016.04.077 .
  15. Yanqiu Zhang, Shuyong Jiang, Xiaoming Zhu, Yanan Zhao. A molecular dynamics study of intercrystalline crack propagation in nano-nickel bicrystal films with (0 1 0) twist boundary. Engineering Fracture Mechanics, 2016, Volume 168, Part A, pp. 147–159. doi: 10.1016/j.engfracmech.2016.10.008 .
  16. Yanqiu Zhang, Shuyong Jiang, Xiaoming Zhu, Yanan Zhao. Influence of twist angle on crack propagation of nanoscale bicrystal nickel film based on molecular dynamics simulation. Physica E: Low-dimensional Systems and Nanostructures, 2017, Volume 87, pp. 281–294. doi: 10.1016/j.physe.2016.11.005 .
  17. Freitas R., Asta M., Bulatov V. Quantum effects on dislocation motion from ring-polymer molecular dynamics.
  18. Computational Materials, 2018, Volume 4, p. 55. doi: 10.1038/s41524-018-0112-9 .
  19. Nishimura K., Miyazaki N. Molecular dynamics simulation of crack growth under cyclic loading. Computational Materials Science, 2004, Volume 31, pp. 269–278. doi: 10.1016/j.commatsci.2004.03.009 .
  20. Nishimura K., Miyazaki N. Molecular dynamics simulation of crack propagation in polycrystalline material. CMES, 2001, Volume 2, pp. 143–154. Available at: http://www.techscience.com/doi/10.3970/cmes.2001.002.143.pdf
  21. Bоsе S.K., Kudrnovsky J., Drchal V., Turek I. Pressure dependence of Curie temperature and resistivity in complex Heusler alloys. Physical Review, 2011, Vol. 84(17), p. 174422. doi: 10.1103/PhysRevB.84.174422 .
  22. Belova O.N., Stepanova L.V. Estimation of crack propagation direction angle under mixed mode loading in linear elastic isotropic materials by generalized fracture mechanics criteria and atomistic modeling (molecular dynamics method). Journal of Physics: Conference Series, 2018, Volume 1096, p. 012060. doi: 10.1088/1742-6596/1096/1/012060 .
  23. Stepanova L.V., Bronnikov S.A., Belova O.N. Otsenka napravleniya rosta treshchiny v usloviyakh smeshannogo nagruzheniya (normal’nyi otryv i poperechnyi sdvig): obobshchennye kriterii klassicheskoi mekhaniki razrusheniya i atomisticheskoe modelirovanie smeshannogo nagruzheniya (metod molekulyarnoi dinamiki) . Vestnik Permskogo natsional’nogo issledovatel’skogo politekhnicheskogo universiteta , 2017, Vol. 4, pp. 189–213. doi: 10.15593/perm.mech/2017.4.13 .
  24. Volegov P.S., Gerasimov R.M., Davletschin R.P. Modeli molekulyarnoi dinamiki: obzor EAM-potentsialov. Chast’ 1: Potentsialy dlya odnokomponentnykh sistem . Vestnik Permskogo natsional’nogo issledovatel’skogo politekhnicheskogo universiteta , 2017, Vol. 4, pp. 214–237. DOI: https://doi.org/10.15593/perm.mech/2017.4.14 .
  25. Verlet L. Computer “experiments”on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys. Rev., 1967, Vol. 159, p. 98. doi: 10.1103/PhysRev.159.98 .
  26. Verlet L. Computer “experiments”on classical fluids. II. Equilibrium correlation functions. Phys. Rev., 1967, Vol. 165, p. 201. doi: 10.1103/PhysRev.165.201 .
  27. Feynman R., Leighton R., Sands M. Feinmanovskie lektsii po fizike . M.: Mir, 1967, Vol. 1. Available at: http://librams.ru/book-29773.html.
  28. Rahman A. Correlations in the motion of atoms in liquid argon. Phys. Rev., 1964, Vol. 136, p. A405. doi: 10.1103/PhysRev.136.A405 .
  29. URL: http://lammps.sandia.gov/ - LAMMPS Molecular Dynamics Simulator .
  30. URL: https://www.ctcms.nist.gov/potentials/- Interatomic Potentials Repository .
  31. Lee J.G. Computational materials science: an introduction. Second edition. Boca Raton: CRC Press, Taylor & Francis, 2017 .
  32. URL: https://www.ovito.org/ - Open Visualization Tool .

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Belova O.N., Stepanova L.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies