Случаи интегрируемости, соответствующие движению маятника на плоскости



Цитировать

Полный текст

Аннотация

В данной работе систематизируются результаты по исследованию уравне- ний плоскопараллельного движения закрепленного твердого тела-маятника, находящегося в некотором неконсервативном поле сил. Параллельно рассмат- ривается задача о плоскопараллельном движении свободного твердого тела, также находящегося в подобном поле сил. При этом на данное свободное те- ло также действует неконсервативная следящая сила, заставляющая во все время движения величину скорости некоторой характерной точки твердо- го тела оставаться постоянной во времени, что означает наличие в системе неинтегрируемой сервосвязи. Полученные результаты cистематизируются и подаются в инвариантном виде. Указаны нетривиальные механические и то- пологические аналогии.

Об авторах

М.В. Шамолин

Московского государственного университета им. М.В. Ломоносова

Автор, ответственный за переписку.
Email: morenov.sv@ssau.ru

Список литературы

  1. Shamolin M.V. New integrable cases and families of portraits in the plane and spatial dynamics of a rigid body interacting with a medium // Journal of Mathematical Sciences. 2003. Vol. 114. № 1. P. 919-975.
  2. Шамолин М.В. Многообразие случаев интегрируемости в динамике маломерного и многомерного твердого тела в неконсервативном поле // Итоги науки и техники. Сер.: Современная математика и ее приложения. Тематические обзоры. 2013. T. 125. C. 5-254.
  3. Shamolin M.V. New cases of integrability in dynamics of a rigid body with the cone form of its shape interacting with a medium // PAMM (Proc. Appl. Math. Mech.). 2009. № 9. P. 139-140.
  4. Шамолин М.В. Многообразие типов фазовых портретов в динамике твердого тела, взаимодействующего с сопротивляющейся средой // Доклады РАН, 1996. Т. 349. № 2. С. 193-197.
  5. Шамолин М.В. Новое двупараметрическое семейство фазовых портретов в задаче о движении тела в среде // Доклады РАН. 1994. Т. 337. № 5. С. 611-614.
  6. Шамолин М.В. Динамические системы с переменной диссипацией: подходы, методы, приложения // Фунд. и прикл. мат. 2008. Т. 14. Вып. 3. С. 3-237.
  7. Арнольд В.И., Козлов В.В., Нейштадт А.И. Математические аспекты классической и небесной механики. М.: ВИНИТИ, 1985. 304 с.
  8. Трофимов В.В. Симплектические структуры на группах автоморфизмов симметрических пространств // Вестн. Моск. ун-та. Сер.: 1. Математика. Механика. 1984. № 6. C. 31-33.
  9. Трофимов В.В., Шамолин М.В. Геометрические и динамические инварианты интегрируемых гамильтоновых и диссипативных систем // Фунд. и прикл. мат. 2010. Т. 16. Вып. 4. С. 3-229.
  10. Шамолин М.В. Методы анализа динамических систем с переменной диссипацией в динамике твердого тела. М.: Экзамен, 2007. 352 с.
  11. Shamolin M.V. Classes of variable dissipation systems with nonzero mean in the dynamics of a rigid body // Journal of Mathematical Sciences. 2004. Vol. 122. № 1. P. 2841-2915.
  12. Шамолин М.В. Некоторые модельные задачи динамики твердого тела при взаимодействии его со средой // Прикл. механика. 2007. Т. 43. № 10. С. 49-67.
  13. Шамолин М.В. Новые интегрируемые случаи в динамике тела, взаимодействующего со средой, при учете зависимости момента силы сопротивления от угловой скорости // Прикл. мат. и мех. 2008. Т. 72. Вып. 2. С. 273-287.
  14. Шамолин М.В. Об интегрируемости в элементарных функциях некоторых классов динамических систем // Вестн. Моск. ун-та. Сер.: 1. Математика. Механика. 2008. № 3. С. 43-49.
  15. Шамолин М.В. Об устойчивости прямолинейного поступательного движения // Прикл. механика. 2009. Т. 45. № 6. С. 125-140.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Шамолин М., 2015

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах