ФАКТОРИЗАЦИЯ ОБЫКНОВЕННЫХ И ГИПЕРБОЛИЧЕСКИХ ИНТЕГРО-ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ИНТЕГРАЛЬНЫМИ УСЛОВИЯМИ В БАНАХОВОМ ПРОСТРАНСТВЕ
- Авторы: Провидас Е.1, Пулькина Л.С.2, Парасидис И.Н.1
-
Учреждения:
- Университет Фессалии
- кафедра уравнений математической физики, Самарский национальный исследовательский университет имени академика С.П. Королева
- Выпуск: Том 27, № 1 (2021)
- Страницы: 29-43
- Раздел: Статьи
- URL: https://journals.ssau.ru/est/article/view/10059
- DOI: https://doi.org/10.18287/2541-7525-2021-27-1-29-43
- ID: 10059
Цитировать
Полный текст
Аннотация
В статье исследованы условия существования единственного точного решения для одного класса абстрактных операторных уравнений вида B1u = Au − SΦ(A0u) − GF(Au) = f, u ∈ D(B1), где A,A0 — линейные абстрактные операторы; G, S — линейные векторы; Φ, F — линейные функциональные векторы. Этот класс уравнений полезен для решения краевых задач для интегро-дифференциальных уравнений в случае, когда A,A0 — дифференциальные операторы, а F(Au), Φ(A0u) — интегральные операторы Фредгольма. Показано, что операторы типа B1 могут быть в некоторых случаях представлены как произведения двух более простых операторов BG,BG0 специального вида, что позволяет получить условие существования единственного точного решения уравнения B1u = f из условий однозначной разрешимости уравнений BGv = f и BG0u = v.
Полный текст
Initial Position
Integro-differential equations play an important role in characterizing many physical, biological, social and engineering problems and are often solved by factorization (decomposition) methods. The factorization methods have applications in biology, ecology, population dynamics, mathematics of financial derivatives, quantum physics, hydrodynamics, gas dynamics, in transport theory, electromagnetic theory, mechanics and chemistry [1–10]. Factorization Methods successfully are used in pure mathematics for solving linear and nonlinear ordinary and partial differential and Volterra-Fredholm integro-differential equations, integro- differential equations of fractional order, fuzzy Volterra-Fredholm integral equations and delay differential equations [11–20]. There are well-known decomposition (factorization) methods: Domain decomposition method, the natural transform decomposition method, the Adomian decomposition method, Modified Adomian decomposition method and the Combined Laplace transform-Adomian decomposition method, which use the so-called Adomyan polynomials or iterations to obtain an n-term approximation of solution, whereas the proposed in this paper factorization method gives the unique exact solution in the closed form. Furthermore it is universal because can be applied in the investigation of Fredholm integro-differential equations, both ordinary and partial.
There are many papers are devoted to investigation of the uniqueness of the solution to nonlocal boundary value problems with integral boundary conditions for hyperbolic differential equation [21–25]. Finding of the exact solution in the general case is the difficult task. We by the universal factorization method find the solvability condition and a unique solution to a nonlocal BVP with integral boundary conditions for Fredholm ordinary integro-differential and integro-hyperbolic differential equations of the type B1u = f . It is the aim of this paper to reappraise the factorization method for integro-differential equations of type B1u = f . This paper is a generalization of the article [26], where by factorization method were stydied the solvability condition and a unique solution to the correct self-adjoint abstract equation of the type B1u = f in terms of a Hermitian matrix in a Hilbert space.
The quadratic factorization methods was applied to some BVPs with integro-differential equations in the case of a Banach space in [27–29].
It is well known that the class of the operators which can be factorized as a superposition of two more simple operators is not wide. But if the operator can be factorized, then the solvability condition and the solution of the given problem are essentially simpler than in the general case without factorization. The paper is organized as follows. In Section 2 we develop the theory for the solution of the problem B1x = f when B1 = BB0. Further by factorization method we solve a nonlocal boundary value problem with integral boundary conditions for Fredholm integro-hyperbolic differential equation. Finally, we give two examples of integro-differential equations demonstrating the power and usefulness of the methods presented.
Throughout this paper we use the following terminology and notation. By X, Y we denote the complex Banach spaces and by X∗ the adjoint space of X, i.e. the set of all complex-valued linear and bounded functionals on X. We denote by f (u) the value of f on u ∈ X. We write D(A) and R(A) for the domain and the range of the operator A : X → Y , respectively. An operator A2 is said to be an extension of an operator A1, or A1 is said to be a restriction of A2, in symbol A1 ⊂ A2, if D(A2) ⊇ D(A1) and A1x = A2x, for all x ∈ D(A1). An operator A : X → Y is said to be injective or uniquelly solvable if for all u1, u2 ∈ D(A) such that Au1 = Au2, follows that u1 = u2. Remind that a linear operator A is injective if and only if ker A = {0}. An operator A : X → Y is called surjective or everywhere solvable if R(A) = Y. The operator A : X → Y is called bijective if A is both injective and surjective. Lastly, A is said to be correct if A is bijective and its inverse A−1 is bounded on Y . If gi ∈ X and Ψi ∈ X∗, i = 1, . . . , m,
then we denote by g = (g1, . . . , gm), Ψ =col(Ψ1, . . . , Ψm) and Ψ(u) =col(Ψ1(u), . . . , Ψm(u)) and write
m
g ∈ Xm, Ψ ∈ X∗ . We will denote by Ψ(g) the m × m matrix whose i, j-th entry Ψi(gj ) is the value of
Ψi on element gj . Note that Ψ(gC) = Ψ(g)C, where C is a m× k constant matrix. We will also
functional
denote by
0m the zero and by Im the identity m×m matrices. By 0 we will denote the zero column vector.
Factorization of integro-differential equations in a Banach space
We remind first the following Theorem 1 from [29].
Theorem 2.1. Let A be a bijective operator on a Banach space X, the components of the vectors G =
= (g1, ..., gm), F = col(F1, ...Fm) arbitrary elements of X and X∗, respectively and the operator BG : X → X
be defined by
BGu = Au − GF (Au) = f, D(BG) = D(A), f ∈ X. (2.1)
Then the following statements are true:
Вестник Самарского университета. Естественнонаучная серия. 2021. Том 27, № 1. С. 29–43
Vestnik of Samara University. Natural Science Series. 2021, vol. 27, no. 1, pp. 29–43 31
The operator BG is bijective on X if and only if
det L = det[Im − F (G)] ̸= 0, (2.2)
and the unique solution to boundary value problem (2.1), for any f ∈ X, is given by the formula
G
u = B−1f = A−1f + A−1G[Im − F (G)]−1F (f ). (2.3)
If in addition the operator A is correct, then BG is correct.
Now, by using the above theorem we prove the following theorem which is useful for solving integro- differential equations by factorization method.
Theorem 2.2. Let X be a Banach space, the vectors G0 = (g(0), ..., g(0)), G = (g , ..., g
), S = (s , ..., s ) ∈
1 m 1 m 1 m
Xm ∗
, the components of the vectors F = col(F1, ..., Fm) and Φ = col(ϕ1, ..., ϕm) belong to X BG0 , BG, B1 : X → X defined by
and the operators
BG0 u = A0u − G0Φ(A0u) = f, D(BG0 ) = D(A0), (2.4)
BGu = Au − GF (Au) = f, D(BG) = D(A), (2.5)
B1u = AA0u − SΦ(A0u) − GF (AA0u) = f, D(B1) = D(AA0) (2.6)
where A0 and A are linear correct operators on X and G0 ∈ D(A)m. Then the following statements are satisfied:
If
S ∈ R(BG)m and S = BGG0 = AG0 − GF (AG0), (2.7)
then the operator B1 can be factorised in B1 = BGBG0 .
If in addition the components of the vector Φ = (Φ1, ..., Φm) are linearly independent elements of X∗ and
the operator B1 can be factorised in B1 = BGBG0 , then (2.7) is fulfilled.
If the operator B1 can be factorised in B1 = BGBG0 , then B1 is correct if and only if the operators
BG0 and BG are correct which means that
det L0 = det[Im − Φ(G0)] ̸= 0 and det L = det[Im − F (G)] ̸= 0. (2.8)
If the operator B1 has the factorization in B1 = BGBG0 and is correct, then the unique solution of (2.6) is
u = B−1f = A−1A−1f + [A−1A−1G + A−1G0L−1Φ(A−1G)] ×
1 0 0 0 0
×L−1F (f ) + A−1G0L−1Φ(A−1f ). (2.9)
0 0
Proof. (i) Taking into account that G0 ∈ D(A)m and (2.4)–(2.6) we get
D(BGBG0 ) = {u ∈ D(BG0 ) : BG0 u ∈ D(BG)} =
= {u ∈ D(A0) : A0u − G0Φ(A0u) ∈ D(A)} =
= {u ∈ D(A0) : A0u ∈ D(A)} = D(AA0) = D(B1).
So D(B1) = D(BGBG0 ). Let y = BG0 u. Then for each u ∈ D(AA0) since (2.5) and (2.4) we have
BGBG0 u = BGy = Ay − GF (Ay) =
= A[A0u − G0Φ(A0u)] − GF (A[A0u − G0Φ(A0u)]) =
= AA0u − AG0Φ(A0u) − GF (AA0u) + GF (AG0)Φ(A0u) =
= AA0u − [AG0 − GF (AG0)]Φ(A0u) − GF (AA0u) =
= AA0u − BGG0Φ(A0u) − GF (AA0u),
(2.10)
where the relation BGG0 = AG0 − GF (AG0) follows from (2.5) if instead of u we take G0. By comparing (2.10) with (2.6), it is easy to verify that B1u = BGBG0 u for each u ∈ D(AA0) if a vector S satisfies (2.7).
Let the operator B1 can be factorized in B1 = BGBG0 . Then by comparing (2.10) with (2.6) we obtain
(BGG0 − S)Φ(A0u) = 0. (2.11)
Because of the correctness of operators A, A0 and the linear independence of Φ1, ..., Φm, there exists a system u1, ..., um ∈ D(AA0) such that Φ(A0u0) = Im where u0 = (u1, ..., um). By substituting u = u0 into (2.11) we get S = BGG0. Hence S ∈ R(BG)m and S = BGG0 = AG0 − GF (AG0).
Let the operator B1 be defined by (2.6) where S = BGG0. Then Equation (2.6) can be equivalently represented in matrix form:
B1u = AA0u − (BGG0, G)
( Φ(A−1AA0u) )
F (AA0u)
= f (2.12)
Providas E., Pulkina L.S., Parasidis I.N. Factorization of ordinary and hyperbolic integro-differential equations...
32Провидас E., Пулькина Л.С., Парасидис И.Н. Факторизация обыкновенных и гиперболических...
or
B1u = Au − GF (Au) = f, D(B1) = D(A), (2.13)
(
where A = AA0, G = (BGG0, G), F =col(Φˆ , F ), F (v) =
Φˆ (v)
F (v)
) ( Φ(A−1v) )
= F (v)
. Notice that the
operator A = AA0 is correct, because of A and A0 are the correct operators and that the functional vector
F is bounded, since the vector Φˆ
is bounded as a superposition of a bounded functional Φ and a bounded
operator A−1. Then we apply Theorem 2.1. By this theorem the operator B1 is correct if and only if
[( Im 0m )
( Φˆ (BGG0)
Φˆ (G) )]
det L1 = det[I2m − F (G)] = det
0m Im
— F (BG
=
G0) F (G)
= det
( Im − Φˆ (AG0 − GF (AG0)) −Φˆ (G) ) =
−[F (AG0 − GF (AG0))] Im − F (G)
= det
=
( Im − Φ(G0 − A−1GF (AG0)) −Φ(A−1G) )
−[F (AG0 − GF (AG0))] Im − F (G)
= det
( Im − Φ(G0) + Φ(A−1G)F (AG0) −Φ(A−1G) )
−F (AG0) + F (G)F (AG0) Im − F (G)
̸= 0.
Multiplying from the left the elements of the second column by F (AG0) and adding to the corresponding elements of the first column of the determinant L1, by Remark 1, [31] we get
( Im − Φ(G0) −Φ(A−1G) )
det L1 = det
0m Im − F (G)
= det[Im − Φ(G0)] det[Im − F (G)]
= det L0 det L ̸= 0.
So we proved that the operator B1 is correct if and only if (2.8) is fulfilled.
Let u ∈ D(AA0) and BGBG0 u = f . By Theorem 2.1 (ii) since BG, BG0 are correct operators, we obtain
BG −1
1
0 u = BG f = A−
f + A−1
GL−1
F (f ),
G
u = B−1 (A−1f + A−1GL−1F (f )) .
0
In the last equation we denote by g = A−1f + A−1GL−1F (f ). Bu using again Theorem 2.1 (ii), with
A0, G0, Φ, L0, in place of A, G, F, L respectively, we get
u = B−1g = A−1g + A−1G0L−1Φ(g) = A−1(A−1f + A−1GL−1F (f ))+
G0 0 0 0 0
0 G0L0 Φ (A
f + A GL
F (f )) = A0 A
f + A0 A GL
F (f )+
+A−1 −1 −1
−1 −1
−1 −1
−1 −1 −1
0 G0L0 [Φ(A
f ) + Φ(A
G)L
F (f )]
+A−1 −1 −1
−1 −1
which implies (2.9). The theorem is proved. ✷
The next theorem is useful for applications.
Theorem 2.3. Let the space X and the vectors F, Φ be defined as in Theorem 2.2, the vectors G =
= (g1, ..., gm), S = (s1, ..., sm) ∈ Xm and the operator B1 : X → X by
B1u = Au − SΦ(A0u) − GF (Au) = f, x ∈ D(B1) (2.14)
where A0 : X → X is a correct m-order differential operator and A is a n-order differential operator, m < n. Then the next statements are fulfilled:
if there exist a n − m order differential operator A : X → X, such that
A = AA0, D(B1) = D(AA0), (2.15)
and a vector G0 ∈ D(A), satisfying
AG0 − GF (AG0) = S, (2.16)
then the operator B1 can be factorized into B1 = BGBG0 , where BG0 and BG are given by (2.4) and (2.5) respectively, BG is determined by A and G, F from (2.14), (2.15) and lastly, the operator BG0 by A0, Φ and G0 from (2.14) and (2.16),
if there exists a bijective n − m order differential operator A : X → X, satisfying (2.15) and
det L = det[Im − F (G)] ̸= 0, (2.17)
then the operator B1 is factorized in B1 = BGBG0 , where the operators BG0 , BG, A0, A, the vectors G, F, Φ are determined as in (i) and
G0 = A−1S + A−1GL−1F (S). (2.18)
Вестник Самарского университета. Естественнонаучная серия. 2021. Том 27, № 1. С. 29–43
Vestnik of Samara University. Natural Science Series. 2021, vol. 27, no. 1, pp. 29–43 33
if in addition to (ii) A is correct, then B1 is correct if and only if
det L0 = det[Im − Φ(G0)] = det[Im − Φ(A�−1S) − Φ(A�−1G)L−1F (S)] ̸= 0, (2.19)
and the problem (2.14)-(2.16) has the unique solution given by (2.9).
Proof (i) If there there exist a n − m order differential operator A and a vector G0 satisfying (2.15) and
(2.16), then from (2.14) we get
B1u = AA0u − SΦ(A0u) − GF (AA0u) = f, u ∈ D(AA0). (2.20)
From (2.20) we take a triple of elements, the operator A and vectors G, F, and construct the operator BG according to the formula (2.5). To determine the operator BG0 by formula (2.4), we take from (2.20) the operator A0 and the vector Φ, whereas as G0 we take any solution G0 of Equation (2.16). We proved in the previous theorem (i) that D(BGBG0 ) = D(AA0) = D(B1). Substituting (2.16) into (2.20), for every
u ∈ D(B1) we get
B1u = AA0u − [AG0 − GF (AG0)] Φ(A0u) − GF (AA0u) = BGA0u − BGG0Φ(A0u) =
= BG [A0u − G0Φ(A0u)] = BGBG0 u.
Thus B1 = BGBG0 .
As in the proof of (i) we construct the operators BG, BG0 . By Theorem 2.1, since (2.17), the operator
G
BG is correct and Equation (2.16) can be presented by BGG0 = S. Then G0 = B−1S. The last equation by
Corollary 2.1, implies the unique vector G0 by (2.18). Further as in the proof of (i) we get the factorization
B1 = BGBG0 , where BG0 is unique.
If (2.17), (2.18) hold true, then by statements (i), (ii), B1 can be factorized in B1 = BGBG0 . By Theorem
2.2 (iii), B1 is correct if and only if (2.8) holds or, taking into account (2.17) and (2.18), if and only if det L0 = det[Im − Φ(G0)] ̸= 0, or if and only if (2.19) is fulfilled. The last inequality immediately follows by substitution (2.18) into det L0 = det[Im − Φ(G0)]. Since B1 is correct and factorized in B1 = BGBG0 ,
by Theorem 2.2 (iv), we obtain the unique solution (2.9) to the problem (2.14)-(2.16). So the theorem is proved. ✷
Example 2.4. Let u(x) ∈ C2[0, 1]. Then the problem
u′′(t) − t ∫ 1 tu′(t)dt − t2 ∫ 1 t3u′′(t)dt = 2t + 1, (2.21)
0 0
u(0) + u(1) = 0, u′(0) − 2u′(1) = 0,
is correct on C[0, 1] and its unique solution is given by the formula
−
261377 665232t + 103608t2 + 30080t3 + 8790t4
u(t) =
207216
. (2.22)
Proof. First we need to find the operators B1, A, A0 and check the condition D(B1) = D(AA0). If we compare equation (2.21) with equation (2.14), (2.15), it is natural to take
1
B1u(t) = u′′(t) − t ∫
tu′(t)dt − t2 ∫ 1
t3u′′(t)dt = 2t + 1, (2.23)
0 0
D(B1) = {u(t) ∈ C2[0, 1] : u(0) + u(1) = 0, u′(0) − 2u′(1) = 0},
Au = AA0u = u′′(t),
D(B1) = {u(t) ∈ C2[0, 1] : u(0) + u(1) = 0, u′(0) − 2u′(1) = 0}, (2.24)
A0u(t) = u′(t), D(A0) = {u(t) ∈ C1[0, 1] : u(0) = −u(1)},
Φ(A0u) =
∫ 1
tu′(t)dt, F (AA0u) =
0
∫ 1
t3u′′(t)dt, (2.25)
0
S = t, G = t2. Denote A0u(t) = u′(t) = y(t) = y. Then from (2.24) we have y ∈ D(A), AA0u = (u′(t))′ =
= y′(t) = Ay(t), y(0) − 2y(1) = 0. So we proved that
Ay = y′(t), D(A) = {y(t) ∈ C1[0, 1] : y(0) − 2y(1) = 0}.
Then by definition
D(AA0) = {u(t) ∈ D(A0) : A0u(t) ∈ D(A)} =
= {u(t) ∈ C1[0, 1] : u(0) = −u(1), u′(t) ∈ C1[0, 1], u′(0) − 2u′(1) = 0} =
= {u(t) ∈ C2[0, 1] : u(0) + u(1) = 0, u′(0) − 2u′(1) = 0} = D(B1).
Providas E., Pulkina L.S., Parasidis I.N. Factorization of ordinary and hyperbolic integro-differential equations...
34Провидас E., Пулькина Л.С., Парасидис И.Н. Факторизация обыкновенных и гиперболических...
So D(B1) = D(AA0). It is easy to verify that the operators A, A0 are correct on C[0, 1] and for every
f (t) ∈ C[0, 1] the corresponding inverse operators are defined by
A−1f (t) = ∫ t f (s)ds − 2 ∫ 1 f (s)ds, (2.26)
0
A−1 t
0
1 ∫ 1
From (2.25) we have
0
0 f (t) = ∫
f (s)ds − 2
0 f (s)ds. (2.27)
Φ(f ) =
∫ 1
sf (s)ds, F (f ) =
0
∫ 1
s3f (s)ds. (2.28)
0
Then F (G) = ∫ 1 s3s2ds = 1 , F (S) = ∫ 1 s3sds = 1 ,
0 6 0 5
det L = det[Im − F (G)] = 1 − 1/6 = 5/6, L−1 = 6/5,
A−1S =
∫ t ∫ 1
sds − 2
t2
sds =
− 1, A−1G =
∫ t ∫ 1
s2ds − 2
3
s2ds = t − 2 ,
0 0 2
t2
( t3
0 0 3 3
2 ) 6 1 1
G0 = A−1S + A−1GL−1F (S) =
Taking into account (2.28) we obtain
2 − 1 +
3 − 3
=
5 5 50
(4t3 + 25t2 − 58).
1
Φ(G ) = 1 ∫
0
0 50
s(4s3
+ 25s
2 439
− 58)ds = − 1000 .
1000
Since det L0 = det[Im − Φ(G0)] = 1439 ̸= 0 then, by Theorem 2.3 (iii), Problem (2.23) or (2.21) is correct.
By (2.27) we calculate
A−1
73
29t t3 t4
1 −1
7 2t t4
0 G0 = 150 −
−
25 + 6 + 50 , A0 A
G = 24 −
+
3 12
and for f (t) = 2t + 1 by (2.26)-(2.28) we obtain
2
A−1f = −4 + t + t2, A−1A−1f = 19 − 4t + t
t3 13 17
1
+ , F (f ) = , Φ(A− f ) = −
0 12 2 3 20 12
Substituting these values into (2.9) we obtain the unique solution of (2.23), which is given by (2.22). ✷
Example 2.5. Let u(x) ∈ C3[0, 1]. Then the problem
u′′′(x) − 8x2 ∫ 1 tu′(t)dt − (3x + 1) ∫ 1 t2u′′′(t)dt = 2x2 − 6x + 4, (2.29)
0 0
0
u(0) = 2 ∫ 1 u(t)dt, u′(0) = −u′(1), u′′(0) = −u′′(1),
is uniquely solvable on C[0, 1] and its unique solution is given by
u(x) = x3 − 3 x2 + 1 . (2.30)
2 2
Proof. First we must determine the operators B1, A and A0. By comparing Problem (2.29) with (2.14) it is natural to take X = C[0, 1],
B1u = u′′′(x) − 8x2
∫ 1 ∫ 1
tu′(t)dt − (3x + 1)
0 0
∫ 1
t2u′′′(t)dt = 2x2 − 6x + 4, (2.31)
D(B1) = {u(x) ∈ C3[0, 1] : u(0) = 2
u(t)dt, u′(0) = −u′(1), u′′(0) = −u′′(1)},
0
0 0
Φ(A u) = ∫ 1 ∫ 1
1
tu′(t)dtdy, F (AA0u) = ∫
∫ 1 t2u
′′′
(t)dtdy, (2.32)
0 0 0
Ax = AA0u(x) = u′′′(x), A0u = u′(x).
Denote v(x) = u′(x). Then AA0u(x) = u′′′(x) = (u′(x))′′ = Av(x) = v′′(x). From boundary conditions (2.31) follws that v(0) = u′(0) = −u′(1) = −v(1), v′(0) = u′′(0) = −u′′(1) = −v′(1). So the operators A, A0 are
defined by
Av(x) = v′′(x), D(A) = {v(x) ∈ C2[0, 1] : v(0) = −v(1), v′(0) = −v′(1)},
1
0
A0u(x) = u′(x), D(A0) = {u(x) ∈ C1[0, 1] : u(0) = 2 ∫
u(x)dx}.
Now we make sure that D(B1) = D(AA0). Using the definition of the product operators we get
D(AA0) = {u(x) ∈ D(A0) : A0u ∈ D(A)} = {u(x) ∈ C1[0, 1] : u(0) =
= 2 ∫ 1 u(x)dx, u′(x) ∈ C2[0, 1], u′(0) = −u′(1), u′′(0) = −u′′(1)} = D(B ).
0 1
Вестник Самарского университета. Естественнонаучная серия. 2021. Том 27, № 1. С. 29–43
Vestnik of Samara University. Natural Science Series. 2021, vol. 27, no. 1, pp. 29–43 35
Since D(B1) = D(AA0), we can apply Theorem 2.3. It is easy to verify that the operators A and A0 are correct and their inverse operators for all f (t) ∈ C[0, 1] are given by
A−1 1 x
0 f (x) = 2 ∫0 (t − 1)f (t)dt + ∫0 f (t)dt, (2.33)
A−1f (x) = 1 ∫ 1 (t − x − 1 ) f (t)dt + ∫ x(x − t)f (t)dt. (2.34)
2 0 2 0
By comparing again (2.31) with (2.14) it is natural to take S = S(x) = 8x2, G = G(x) = 3x + 1. From (2.32) we get
Φ(f ) =
∫ 1
tf (t)dt, F (f ) =
0
∫ 1
t2f (t)dt. (2.35)
0
Let
fˆ(x) = A−1f (x) and AA0u(x) = f (x). Then, since A0, A are invertible, by means of (2.33) and (2.34)
we have
u(x) = A−1A−1f (x) = A−1fˆ(x) = 2 ∫ 1(t − 1)fˆ(t)dt + ∫ x fˆ(t)dt =
0 0 0 0
= 2 ∫ 1(t − 1) [ 1 ∫ 1 (s − t − 1 ) f (s)ds + ∫ t(t − s)f (s)ds] dt+
0 2 0 2 0
]
+ ∫ x [ 1 ∫ 1 (s − t − 1 ) f (s)ds + ∫ t(t − s)f (s)ds
dt.
0 2 0 2 0
Further using Fubini theorem we obtain
A−1 −1
1 1 2 3 2
0
0 A f (x) = − 12 ∫
[3x
+ 3x(1 − 2s) − 4s
+ 1 ∫ x 2
+ 12s
− 6s − 1]f (s)ds +
2 0 (x − s) f (s)ds. (2.36)
Using (2.36) for f = f (x) = 2x2 − 6x + 4 and G = 3x + 1 we get
0 A
A−1 −1
12
f = − 1 ∫
1[3x2
+ 3x(1 − 2s) − 4s3
+ 12s2
− 6s − 1](2s2
− 6s + 4)ds + (2.37)
0
+ 1 ∫ x 2 2
1 5
4 3 2
2 0 (x − s) (2s
− 6s + 4)ds = 60 (2x
− 15x
+ 40x
− 25x
− 10x + 12),
A−1 −1
1 1 2 3 2
0 A = − 12 ∫0 [3x
+ 3x(1 − 2s) − 4s
+ 12s
− 6s − 1](3s + 1)ds + (2.38)
+ 1 ∫ x 2
1 4 3 2
2 0 (x − s) (3s + 1)ds = 120 (15x
+ 20x
− 75x
+ 15x + 19).
Using (2.34) for S = S(x) = 8x2, G = G(x) = 3x + 1, f (x) = 2x2 − 6x + 4 we find
4
A−1S = 1 ∫ 1 (t − x − 1 ) (8t2)dt + ∫ x(x − t)(8t2)dt = 2x −4x+1 ,
2 0 2 0 3
2
A−1G = 1 ∫ 1 (t − x − 1 ) (3t + 1)dt + ∫ x(x − t)(3t + 1)dt = 4x (x+1)−10x+1 ,
2 0 2 0 8
A−1f = 1 ∫ 1 (t − x − 1 ) (2t2 − 6t + 4)dt + ∫ x(x − t)(2t2 − 6t + 4)dt
2 0 2 0
2 2
6 .
= x (x −6x+12)−5x−1
Then by using (2.35) we arrive at
Φ(A−1G) = 1 ∫ 1 t[4t2(t + 1) − 10t + 1]dt = − 31 ,
8 0 240
F (G) = ∫ 1 t2(3t + 1)dt = 13 ,
0 12
Φ(A−1f ) = 1 ∫ 1 t[t2(t2 − 6t + 12) − 5t − 1]dt = − 1 ,
6 0 30
F (f ) = ∫ 1 t2(2t2 − 6t + 4)dt = 7 , F (S) = ∫ 1 t2(8t2)dt = 8 .
0 30 0 5
Further by (2.17), (2.18) and (2.19) we find
det L = det[Im − F (G)] = 1 − 13/12 = −1/12,
4 2
G0 = G0(x, y) = A−1S + A−1GL−1F (S) = 2x −4x+1 + 4x (x+1)−10x+1 (−12) 8
4 3 2
3 8 5
15 ,
= 10x −144x −144x +340x−31
1
Φ(G0) = 1 ∫
t(10t4 − 144t3 − 144t2 + 340t − 31)dt = 347 ,
15 0
150
det L0 = det[Im − Φ(G0)] = 1 − 347 = − 197 .
150
150
Since det L, det L0 ̸= 0, by Theorem 2.3, Problem (2.31) or (2.29) is correct. Applying (2.33) we thus have
A−1
0 G0 = 2 ∫
1
x
(t − 1)G0(t)dt + ∫
G0(t)dt =
0
= 2 ∫ 1
0
4 3 2
15 0 (t − 1)(10t
− 144t
− 144t
+ 340t − 31)dt+
Providas E., Pulkina L.S., Parasidis I.N. Factorization of ordinary and hyperbolic integro-differential equations...
36Провидас E., Пулькина Л.С., Парасидис И.Н. Факторизация обыкновенных и гиперболических...
+ 1 ∫ x 4 3 2
15 0 (10t
− 144t
4 3
− 144t
2
+ 340t − 31)dt =
75 +
= − 223
.
x(2x −36x −48x +170x−31)
15
Substituting the above values into (2.9) we get the solution (2.30). ✷
Factorization of hyperbolic integro-differential equations with integral boundary conditions
Everywhere below Ω = {(x, y) ∈ R2 : 0 � x, y � 1}.
Lemma 3.1. Let a(x), c(x) ∈ C[0, 1], K(y) ∈ C[0, 1]. Then the operator A : C(Ω¯ ) → C(Ω¯ ) corresponding to
the problem:
y
Au(t) = u′ (x, y) + c(x)u(x, y) = f (x, y), (3.1)
D(A) = {u(x, y) ∈ C(Ω¯ ) : u′ (x, y) ∈ C(Ω¯ ), u(x, 0) = a(x) ∫ 1 K(y)u(x, y)dy}
is correct if and only if
y
∫ 1
a(x)
0
0
K(y)e−yc(x)dy ̸= 1, (3.2)
and the unique solution of the above problem is given by the formula
0
−1
u(x, y) = A−1f (x, y) = a(x)e−yc(x) (1 − a(x) ∫ 1 K(y)e−yc(x)dy) ×
× ∫ 1
yc(x) ∫ y
tc(x)
−yc(x) ∫ y
tc(x)
0 K(y)e−
0 f (x, t)e
dtdy + e
0 f (x, t)e
dt. (3.3)
Proof. Assume that u(x, y) ∈ ker A and (3.2) hold. Then from (3.1) we get
∫ 1
u′
y (x, y) + c(x)u(x, y) = 0, u(x, 0) = a(x)
From the above equation by integration on y we obtain
K(y)u(x, y)dy. (3.4)
0
0
u(x, y) = u(x, 0)e−yc(x), u(x, y) = a(x)e−yc(x) ∫ 1 K(y)u(x, y)dy, (3.5)
∫ 1
0 K(y)u(x, y)dy = a(x)
∫ 1
0 K(y)e−
yc(x)
0
dy ∫ 1 K(y)u(x, y)dy,
[1 − a(x) ∫ 1 K(y)e−yc(x)dy] ∫ 1 K(y)u(x, y)dy = 0.
0 0
0
From the last equation, since (3.2), follows that ∫ 1 K(y)u(x, y)dy = 0. Substitution of this value into (3.5) implies u(x, y) = 0. This means that the operator A is injective.
0
Conversaly. Let u(x, y) ∈ ker A and a(x) ∫ 1 K(y)e−yc(x)dy = 1. Then (3.4) holds. It is easy to verify
that u(x, y) = e−yc(x) satisfies problem (3.4). Thus we prove that u(x, y) = e−yc(x) ∈ ker A and so A is not
injective.
0
We will find the solution to (3.1). Let a(x) ∫ 1 K(y)e−yc(x)dy ̸= 1. Then A is injective and problem (3.1)
has a unique solution. From (3.1) by integration on y we obtain
u(x, y) = e−yc(x)a(x) ∫ 1 K(y)u(x, y)dy + e−yc(x) ∫ y f (x, t)etc(x)dt, (3.6)
0
∫ 1 ∫ 1
0
yc(x) 1
0 K(y)u(x, y)dy = a(x)
+ ∫ 1
0 K(y)e−
yc(x) ∫ y
0
dy ∫ K(y)u(x, y)dy +
tc(x)
0 K(y)e−
0 f (x, t)e
dtdy,
[1 − a(x) ∫ 1 K(y)e−yc(x)dy] ∫ 1 K(y)u(x, y)dy =
0
= ∫ 1
yc(x) ∫ y
0
tc(x)
Then since (3.2) we obtain
∫ 1
0 K(y)e−
(
0 f (x, t)e
dtdy.
)−1
K(y)u(x, y)dy =
0
0
1 − a(x) ∫ 1 K(y)e−yc(x)dy ×
× ∫ 1
0 K(y)e−
yc(x) ∫ y
0 f (x, t)e
tc(x)
dtdy. (3.7)
Вестник Самарского университета. Естественнонаучная серия. 2021. Том 27, № 1. С. 29–43
Vestnik of Samara University. Natural Science Series. 2021, vol. 27, no. 1, pp. 29–43 37
Substituting (3.7) into (3.6), we obtain the unique solution (3.3) to (3.1) for every f ∈ C(Ω¯ ). Since f in (3.3) is an arbitrary element of C(Ω¯ ), then R(A) = C(Ω¯ ). It is easy to verify that A−1 is bounded. Hence A is correct. ✷
Lemma 3.2. Let b(y), d(y) ∈ C[0, 1], K0(x) ∈ C[0, 1]. Then the operator A0 : C(Ω¯ ) → C(Ω¯ ) corresponding to
the problem:
x
A0u(t) = u′ (x, y) + d(y)u(x, y) = f (x, y), (3.8)
x
D(A0) = {u(x, y) ∈ C(Ω¯ ) : u′
∈ C(Ω¯ ), u(0, y) = b(y) ∫ 1
K0(x)u(x, y)dx}
is correct if and only if
∫ 1
b(y)
0
0
K0(x)e−xd(y)dx ̸= 1 (3.9)
and the unique solution of the above problem is given by the formula
−1
u(x, y) = A−1f (x, y) = b(y)e−xd(y) (1 − b(y) ∫ 1 K (x)e−xd(y)dx)
× (3.10)
0
× ∫ 1
xd(y) ∫ x
sd(y)
0 0
−xd(y) ∫ x
sd(y)
0 K0(x)e−
0 f (s, y)e
dsdx + e
0 f (s, y)e
ds.
Proof. Assume that u(x, y) ∈ ker A0 and (3.9) hold. Then from (3.8) we get
∫ 1
u′
x(x, y) + d(y)u(x, y) = 0, u(0, y) = b(y)
From the last equation by integration on x we obtain
K0(x)u(x, y)dx. (3.11)
0
u(x, y) = u(0, y)e−xd(y), u(x, y) = e−xd(y)b(y) ∫ 1 K (x)u(x, y)dx, (3.12)
∫ 1 ∫ 1
0 0
xd(y) 1
0 K0(x)u(x, y)dx = b(y)
[
0 K0(x)e−
] ∫ 1
0
dx ∫ K0(x)u(x, y)dx,
1 − b(y) ∫ 1 K (x)e−xd(y)dx
K (x)u(x, y)dx = 0.
0 0 0 0
If b(y) ∫ 1 K (x)e−xd(y)dx ̸= 1, we get ∫ 1 K (x)u(x, y)dx = 0. Substitution of this value into (3.12) implies
0 0 0 0
u(x, y) = 0. This means that A0 is injective.
1
xd(y)
Conversaly. Let u(x, y) ∈ ker A0 and b(y) ∫0 K0(x)e−
dx = 1. Then (3.11) holds. It is easy to verify
that u(x, y) = e−xd(y) ̸= 0 satisfies (3.11). Thus we prove that ker A0 ̸= {0} and so A0 is not injective.
We will find the solution to (3.8). Let b(y) ∫ 1 K (x)e−xd(y)dx ̸= ±1. Then A
is injective and Problem (3.8)
0 0 0
has a unique solution. From (3.8) by integration on x for every f ∈ C(Ω¯ ) we obtain
u(x, y) = e−xd(y)b(y) ∫ 1 K (x)u(x, y)dx + e−xd(y) ∫ x f (s, y)esd(y)ds, (3.13)
0 0
∫ 1 ∫ 1
0
xd(y) 1
0 K0(x)u(x, y)dx = b(y)
+ ∫ 1
0 K0(x)e−
xd(y) ∫ x
0
dx ∫
sd(y)
K0(x)u(x, y)dx +
0 K0(x)e−
0 f (s, y)e
dsdx,
[1 − b(y) ∫ 1 K (x)e−xd(y)dx] ∫ 1 K (x)u(x, y)dx =
0 0
= ∫ 1
xd(y) ∫ x
0 0
sd(y)
Then since (3.9) we obtain
∫ 1
0 K0(x)e−
(
0 f (s, y)e
1
dsdx.
)−1
K0(x)u(x, y)dx =
0
0
1 − b(y) ∫
K0(x)e−xd(y)dx ×
× ∫ 1
0 K0(x)e−
xd(y) ∫ x
0 f (s, y)e
sd(y)
dsdx. (3.14)
Substituting (3.14) into (3.13), we obtain the unique solution (3.10) to (3.8) for every f ∈ C(Ω¯ ). Since f
0
in (3.10) is an arbitrary element of C(Ω¯ ), then R(A0) = C(Ω¯ ). It is easy to verify that A−1
is bounded.
Hence A0 is correct. ✷
Theorem 3.3. Let a(x), c(x), K0(x) ∈ C[0, 1], b(y), K(y) ∈ C[0, 1], d(y) ∈ C1[0, 1], h(x, y), u(x, y) ∈
xy
C1(Ω¯ ), u′′ (x, y) ∈ C(Ω¯ ). Then the problem
u′′ ′
xy (x, y) + c(x)ux(x, y) + d(y)uy (x, y) + h(x, y)u(x, y) = f (x, y), (3.15)
u(0, y) = b(y) ∫ 1 K (x)u(x, y)dx,
0 0
u′ 1
x
x(x, 0) + d(0)u(x, 0) = a(x) ∫0 K(y)[u′ (x, y) + d(y)u(x, y)]dy
Providas E., Pulkina L.S., Parasidis I.N. Factorization of ordinary and hyperbolic integro-differential equations...
38Провидас E., Пулькина Л.С., Парасидис И.Н. Факторизация обыкновенных и гиперболических...
is correct if
h(x, y) = d′(y) + c(x)d(y), (3.16)
a(x) ∫ 1 K(y)e−yc(x)dy ̸= 1, b(y) ∫ 1 K (x)e−xd(y)dx ̸= 1 (3.17)
0 0 0
and its unique solution is given by the formula
−1
u(x, y) = b(y)e−xd(y) (1 − b(y) ∫ 1 K (x)e−xd(y)dx)
× (3.18)
× ∫ 1
xd(y) ∫ x
sd(y)
0 0
−xd(y) ∫ x
sd(y)
where
0 K0(x)e−
0 v(s, y)e
dsdx + e
0 v(s, y)e
−1
ds,
0
v(x, y) = a(x)e−yc(x) (1 − a(x) ∫ 1 K(y)e−yc(x)dy)
× (3.19)
× ∫ 1
0 K(y)e−
yc(x) ∫ y
0 f (x, t)e
tc(x)
dtdy + e
f (x, t)e
−yc(x) ∫ y
0
tc(x)
dt.
Proof. Let the operator A be defined by (3.1) and the operator A0 by (3.8), where we suppose that
d(y) ∈ C1[0, 1]. Denote by A1 the operator corresponding to Problem (3.15), namely:
A1u(x, y) = u′′ (x, y) + c(x)u′ (x, y) + d(y)u′ (x, y) + h(x, y)u(x, y), (3.20)
xy x y
D(A1) = {u(x, y) ∈ C(Ω¯ ) : u′ (x, y), u′ (x, y), u′′ (x, y) ∈ C(Ω¯ ), (3.21)
x y xy
u(0, y) = b(y) ∫ 1 K (x)u(x, y)dx,
0
u′
1
x(x, 0) + d(0)u(x, 0) = a(x) ∫
0
K(y)[u′ (x, y) + d(y)u(x, y)]dy}.
0 x
We will prove that A1 = AA0, i.e. D(A1) = D(AA0), A1u = AA0u for all u ∈ D(A1) if h(x, y) = d′(y) +
+ c(x)d(y). Using the definition of a superposition of two operators, we find
D(AA0) = {u ∈ D(A0) : A0u ∈ D(A)} = (3.22)
= {u(x, y) ∈ C(Ω¯ ) : u′
∈ C(Ω¯ ), u(0, y) = b(y) ∫ 1 K (x)u(x, y)dx, A u ∈ D(A)} =
x 0 0 0
= {u(x, y) ∈ C(Ω¯ ) : u′ (x, y) ∈ C(Ω¯ ), (u′ (x, y) + d(y)u(x, y))′
∈ C(Ω¯ ),
x x y
u(0, y) = b(y) ∫ 1 K (x)u(x, y)dx,
u′
x(x, 0) + d(0)u(x, 0) = a(x) ∫
0 0
1
K(y)[u′ (x, y) + d(y)u(x, y)]dy},
0 x
AA0u(x, y) = (u′ (x, y) + d(y)u(x, y))′ + c(x)[u′ (x, y) + d(y)u(x, y)]. (3.23)
x y x
Since d(y) ∈ C1[0, 1], from (u′ (x, y) + d(y)u(x, y))′
∈ C(Ω¯ ) follows that u′′
∈ C(Ω¯ ) and
x y xy
(u′ (x, y) + d(y)u(x, y))′
= u′′ (x, y) + d′(y)u(x, y) + d(y)u′ (x, y) ∈ C(Ω¯ ).
x y xy y
x
Then from (3.22) follows that D(AA0) = D(A1). Furthermore if the condition (3.16) is additionally satisfied then (3.23) implies A1u = AA0u for all u ∈ D(A1). Thus we proved that if (3.16) holds, then A1 = AA0. Now we find the solvability condition and solution of A1u = f, u ∈ D(A1) for the case when (3.16) holds. Denote by v(x, y) = A0u(x, y) = u′ (x, y) + d(y)u(x, y). Then A1u = AA0u = Av = f. The last equation is
correct by Lemma 3.1 if and only if (3.2) is satisfied. Then v = A0u = A−1f where A−1f is calculated
by (3.3) which is (3.19). The equation A0u = v is correct by Lemma 3.2 if and only if (3.9) is satisfied. Then u = A−1v where A−1v is calculated by (3.10) which is (3.18). Thus we proved that if (3.16),
0 0
(3.17) hold true then the operator A1 or Problem (3.15) is correct and its unique solution is (3.18) where
v(x, y) is given by (3.19). The theorem is proved. ✷
From Theorem 3.3 for c(x) = d(y) = h(x, y) = 0 follows the next
xy
Corollary 3.4. Let a(x), K0(x) ∈ C[0, 1], b(y), K(y) ∈ C[0, 1], u(x, y) ∈ C1(Ω¯ ), u′′ (x, y) ∈ C(Ω¯ ). Then the
problem
u′′
xy (x, y) = f (x, y), (3.24)
u(0, y) = b(y) ∫ 1 K (x)u(x, y)dx,
0 0
u′ 1
is correct on C(Ω¯ ) if
x
x(x, 0) = a(x) ∫0 K(y)u′ (x, y)dy
∫ 1
a(x)
0
∫ 1
K(y)dy ̸= 1, b(y)
0
K0(x)dx ̸= 1. (3.25)
Вестник Самарского университета. Естественнонаучная серия. 2021. Том 27, № 1. С. 29–43
Vestnik of Samara University. Natural Science Series. 2021, vol. 27, no. 1, pp. 29–43 39
and the unique solution of Problem (3.24) is given by the formula
u(x, y) = (3.26)
[
= b(y) ∫ 1
∫ x a(s) ∫ 1 ∫ y
0
1−b(y) ∫ 1 K0 (x)dx
0 K0(x)
]
0
0 1−a(s) ∫ 1 K(y)dy
0 K(y)
0 f (s, t)dtdyds +
+ ∫ x ∫ y
∫ x a(s) ∫ 1 ∫ y
0 0 f (s, t)dtds
dx +
0
0 1−a(s) ∫ 1 K(y)dy
0 K(y)
0 f (s, t)dtdyds +
+ ∫ x ∫ y
0 0 f (s, t)dtds.
The following problem is solved by Theorem 2.3.
Example 3.5. Let u(x, y), u′ (x, y), u′ (x, y), u′′
∈ C(Ω). Then the problem
x
u′′
y xy
1 1 1 1
0
0
xy −(x + y) ∫ ∫
x
0
xu′ (x, y)dxdy − 3x3 ∫
xy
0
∫ y2u′′ (x, y)dxdy (3.27)
= 15x3 − 2x − 2y,
u′ 1
x(x, 0) = 0, u(0, y) = (y + 1) ∫0 u(x, y)dx,
is uniquelly solvable if y ̸= 0 and the unique solution of (3.27) is given by the formula
u(x, y) = 5x4y − y − 1. (3.28)
Proof. Denote by B1 the operator corresponding to Problem (3.27). First we must determine the operators
A and A0 and make sure that D(B1) = D(AA0). Comparing (3.27) with (2.14) it is natural to take X = C(Ω),
1
Φ(A0u) = ∫
1
1
1
∫ xu′ (x, y)dxdy, F (AA0u) = ∫ ∫
y2u′′ (x, y)dxdy, (3.29)
0 0 x
0 0 xy
AA0u(x, y) = u′′ (x, y), A0u = u′ (x, y).
xy x
Denote v(x, y) = u′ (x, y). Then AA0u(x, y) = u′′ (x, y) = (u′ (x, y))′
= Av(x, y) = v′ (x, y). From boundary
x xy x y y
conditions (3.27) follws that v(x, 0) = 0. So the operators A, A0 are defined by
Av(x, y) = v′ (x, y), D(A) = {v(x, y) ∈ C(Ω¯ ) : v′ ∈ C(Ω¯ ), v(x, 0) = 0},
y y
A0u(x, y) = u′ (x, y), D(A0) = {u(x, y) ∈ C(Ω¯ ) : u′
∈ C(Ω¯ ),
Then
x x
0
u(0, y) = (y + 1) ∫ 1 u(x, y)dx}.
D(AA0) = {u(x, y) ∈ D(A0) : A0u ∈ D(A)} = {u(x, y) ∈ C(Ω¯ ) :
u′ ′′ 1 ′
x, uxy ∈ C(Ω¯ ), u(0, y) = (y + 1) ∫0 u(x, y)dx, ux(x, 0) = 0} = D(B1).
Since D(B1) = D(AA0), we can apply Theorem 2.3. Note that the operator A coincides with the operator A from Lemma 3.1 if a(x) = c(x) = 0 and the operator A0 coincides with the operator A0 from Lemma 3.2 if b(y) = y + 1, d(y) = 0, K0(x) = 1. Then by Lemma 3.1, the operator A is correct and
∫ y
A−1f (x, y) =
f (x, t)dt, (3.30)
0
by Lemma 3.2 the operator A0 is correct if and only if y ̸= 0 and its inverse is defined by
A−1
0 f (x, y) = −
y + 1 ∫ 1
y 0
(1 − s)f (s, y)ds +
∫ x
f (s, y)ds. (3.31)
0
Notice that the operator AA0 coincides with the operator corresponding to Problem (3.24) and, by Corollary 3.4, is correct if y ̸= 0 and its inverse is defined by
A−1 −1
y + 1 ∫
1 ∫ x ∫ y
∫ x ∫ y
y
0 A f (x, y) = −
0 0
f (s, t)dtdsdx +
0 0
f (s, t)dtds. (3.32)
0
Comparing again (3.27) with (2.14) it is natural to take S = x + y, G = 3x3, f = 15x3 − 2x − 2y. From
(3.29) follows that
Φ(f ) =
∫ 1 ∫ 1
xf (x, y)dxdy, F (f ) =
∫ 1 ∫ 1
y2f (x, y)dxdy. (3.33)
0 0 0 0
Using (3.32) for f = 15x3 − 2x − 2y and G = 3x3 we find
Providas E., Pulkina L.S., Parasidis I.N. Factorization of ordinary and hyperbolic integro-differential equations...
40Провидас E., Пулькина Л.С., Парасидис И.Н. Факторизация обыкновенных и гиперболических...
A−1 −1
y+1
1 x y 3
0 A f (x, y) = −
∫ ∫
y 0 0
0
∫ (15s
2s − 2t)dtdsdx+
4 2 2
+ ∫ x ∫ y 3
45x y−12x y−12xy +(y+1)(6y−5)
0 0 (15s
2s − 2t)dtds =
12 ,
A−1 −1
y+1
1 x y 3
0 A G = −
∫ ∫ ∫
y 0 0 0
3s dtdsdx+
4 2 2 2
+ ∫ x ∫ y 3 3
3 4 5x y+6x y+6xy −3(y+1)
0 0 3s dtds = − 20 (y + 1) + 4 x y +
12 .
By means (3.30) for G = 3x3, S = x + y we get
A−1G = ∫ y G(x, t)dt = ∫ y 3x3dt = 3x3y,
0 0
A−1S = ∫ y S(x, t)dt = ∫ y (x + t)dt = xy + y2/2,
0 0
A−1f = ∫ y f (x, t)dt = ∫ y (15x3 − 2x − 2y)dt = 15x3y − 2xy − y2.
0 0
Using (3.33) we get
F (S) = ∫ 1 ∫ 1 y2S(x, y)dxdy = ∫ 1 ∫ 1 y2(x + y)dxdy = 5 ,
0 0 0 0 12
F (G) = ∫ 1 ∫ 1 y2G(x, y)dxdy = ∫ 1 ∫ 1 y23x3dxdy = 1 ,
0 0 0 0 4
F (f ) = ∫ 1 ∫ 1 y2f (x, y)dxdy = ∫ 1 ∫ 1 y2(15x3 − 2x − 2y)dxdy = 5 ,
0 0 0 0 12
Φ(A−1G) = ∫ 1 ∫ 1 x3x3ydxdy = 3 ,
0 0 10
Φ(A−1f ) = ∫ 1 ∫ 1 x(15x3y − 2xy − y2)dxdy = 1.
0 0
Further by (2.17)-(2.19) we find
L = Im − F (G) = 1 − 1/4 = 3/4,
2
G0 = G0(x, y) = A−1S + A−1GL−1F (S) = xy + y
+ 5 x3y,
1
L0 = Im − Φ(G0) = 1 − ∫
2 3
1
∫ xG0(x, y)dxdy
0
2
= 1 − ∫ 1 ∫ 1 x (xy + y
0
+ 5 x3y) dxdy = 7 .
0 0 2 3 12
∫ ∫
Since det L = 3/4 ̸= 0 and det L0 = 7/12 ̸= 0, by Theorem 2.3, Problem 3.27 is correct. Applying (3.31) obtain
A−1
y+1 1 x
0 G0 = −
y 0 (1 − s)G0(s, y)ds + 0 G0(s, y)ds
4 2 2 2
12 .
= 5x y+6x y+6xy −3(y+1)
Substituting the above values into (2.9) we get (3.28). ✷
Об авторах
Е. Провидас
Университет Фессалии
Автор, ответственный за переписку.
Email: providas@uth.gr
ORCID iD: 0000-0002-0675-4351
кандидат технических наук, доцент
ГрецияЛ. С. Пулькина
кафедра уравнений математической физики, Самарский национальный исследовательский университет имени академика С.П. Королева
Email: louise@samdiff.ru
ORCID iD: 0000-0001-7947-6121
Scopus Author ID: 6506395220
ResearcherId: C-1180-2017
Россия, 443086, Российская Федерация, г. Самара, Московское шоссе, 34.
И. Н. Парасидис
Университет Фессалии
Email: paras@teilar.gr
ORCID iD: 0000-0002-7900-9256
кандидат технических наук, доцент
ГрецияСписок литературы
- Adomian G. Solving Frontier Problems of Physics: The Decomposition Method. Massachusets: Kluwer Academic Publishers, 1994. DOI: http://doi.org/10.1007/978-94-015-8289-6.
- Barkovskii L.M., Furs A.N. Factorization of integro-differential equations of optics of dispersive anisotropic media and tensor integral operators of wave packet velocities. Optics and Spectroscopy, 2001, vol. 90, issue 4, pp. 561–567. DOI: http://doi.org/10.1134/1.1366751.
- Barkovskii L.M., Furs A.N. Factorization of integro-differential equations of the acoustics of dispersive viscoelastic anisotropic media and the tensor integral operators of wave packet velocities. Acoustical Physics, 2002, vol. 48, iss. 2, pp. 128–132. DOI: http://doi.org/10.1134/1.1460945.
- Caruntu D.I. Relied studies on factorization of the differential operator in the case of bending vibration of a class of beams with variable cross-section. Revue Roumaine des Sci. Tech. Serie de Mecanique Appl., 1996, no. 41 (5–6), pp. 389–397.
- Hirsa A., Neftci S.N. An Introduction to the Mathematics of Financial Derivatives. Cambridge: Academic Press, 2013. DOI: http://doi.org/10.1016/C2010-0-64929-7.
- Fahmy E.S. Travelling wave solutions for some time-delayed equations through factorizations. Chaos Solitons & Fractals, 2008, vol. 38, no. 4, pp. 1209–1216. DOI: http://dx.doi.org/10.1016/j.chaos.2007.02.007.
- Geiser J. Decomposition methods for differential equations: theory and applications. Boca Raton: CRC Press, Taylor and Francis Group, 2009, 304 p. DOI: http://doi.org/10.1201/9781439810972.
- Dong S.H. Factorization Method in Quantum Mechanics. Fundamental Theories of Physics. Vol. 150. Dordrecht: Springer, 2007, 308 p. Available at: https://777russia.ru/book/uploads/МЕХАНИКА/Dong%20S.-H.%20Factorization%20method%20in%20quantum%20mechanics%20%28Springer%2C%202007 %29 %28308s %29_PQm_.pdf.
- Nyashin Y., Lokhov V., Ziegler F. Decomposition method in linear elastic problems with eigenstrain. Zamm Journal of applied mathematics and mechanics: Zeitschrift fur angewandte Mathematic and Mechanic, 2005, vol. 85, no. 8, pp. 557–570. DOI: http://dx.doi.org/10.1002/zamm.200510202.
- C.V.M van der Mee. Semigroup and factorization methods in transport theory. (Mathematical Centre Tracts, 146). Mathematisch Centrum, Amsterdam, 1981. Available at: https://ir.cwi.nl/pub/13006/13006D.pdf.
- Berkovich L.M. Factorization as a method of finding of exact invariant solutions of the Kolmogorov-Petrovskii-Piskunov equation and related equations of Semenov and Zel’dovich. Doklady Akademii Nauk, 1992, vol. 322, no. 5, pp. 823–827. Available at: http://mi.mathnet.ru/eng/dan5636.
- Baskonus H.M., Bulut H., Pandir Y. The natural transform decomposition method for linear and nonlinear partial differential equations. Mathematics in Engineering, Science and Aerospace, 2014, vol. 5, no. 1, pp. 111–126. Available at: http://nonlinearstudies.com/index.php/mesa/article/view/823.
- Berkovich L.M. Method of factorization of ordinary differential operators and some of its applications. Applicable Analysis and Discrete Mathematics, 2007, vol. 1, no. 1, pp. 122–149. DOI: http://dx.doi.org/10.2298/AADM0701122B.
- Dehghan M. and Tatari M. Solution of a semilinear parabolic equation with an unknown control function using the decomposition procedure of Adomian. Numerical Methods for Partial Differential Equations, 2007, vol. 23, no. 3, pp. 499–510. DOI: http://dx.doi.org/10.1002/num.20186.
- El-Sayed S., Kaya D., Zarea S. The Decomposition Method Applied to Solve High-order Linear Volterra-Fredholm Integro-differential Equations. International Journal of Nonlinear Sciences and Numerical Simulation, 2004, vol. 5 (2), pp. 105–112. DOI: http://dx.doi.org/10.1515/IJNSNS.2004.5.2.105.
- Evans D.J., Raslan K.R. The Adomain decomposition method for solving delay differential equation. International Journal of Computer Mathematics, 2004, vol. 00, no. 1, pp. 1–6. DOI: http://dx.doi.org/10.1080/00207160412331286815.
- Hamoud A.A., Ghadle K.P. Modified Adomian Decomposition Method for Solving Fuzzy Volterra-Fredholm Integral Equation. Journal of the Indian Mathematical Society, 2018, vol. 85, no. 1–2, pp. 52–69. DOI: http://dx.doi.org/10.18311/jims/2018/16260.
- Rawashdeh M.S., Maitama S. Solving coupled system of nonliear PDEs using the natural decomposition method. International Journal of Pure and Applied Mathematics, 2014, vol. 92, no. 5, pp. 757–776. DOI: http://dx.doi.org/10.12732/ijpam.v92i5.10.
- Yang C., Hou J. Numerical solution of integro-differential equations of fractional order by Laplace decomposition method. WSEAS Transactions on Mathematics, 2013, vol. 12, no. 12, pp. 1173–1183. Available at: https://wseas.org/multimedia/journals/mathematics/2013/b105706-249.pdf.
- Wazwaz A.M. The combined Laplace transform-Adomian decomposition method for handling nonlinear Volterra integro-differential equations. Applied Mathematics and Computation, 2010, vol. 216, no. 4, pp. 1304–1309. DOI: http://dx.doi.org/10.1016/j.amc.2010.02.023.
- Assanova A.T. Nonlocal problem with integral conditions for the system of hyperbolic equations in the characteristic rectangle. Russian Math., 2017, vol. 61, no. 5, pp. 7–20. DOI: http://dx.doi.org/10.3103/S1066369X17050024.
- Kozhanov A.I., Pul’kina L.S. On the Solvability of Boundary Value Problems with a Nonlocal Boundary Condition of Integral Form for Multidimentional Hyperbolic Equations. Differential Equations, 2006, vol. 42, no. 9, pp. 1233–1246. DOI: http://doi.org/10.1134/S0012266106090023.
- Ludmila S. Pulkina. Nonlocal Problems for Hyperbolic Equation from the Viewpoint of Strongly Regular Boundary Conditions. Electronic Journal of Differential Equations, 2020, no. 28, pp. 1–20. Available at: https://ejde.math.txstate.edu/.
- Pul’kina L.S. Initial-Boundary Value Problem with a Nonlocal Boundary Condition for a Multidimensional Hyperbolic Equation. Differential Equations, 2008, vol. 44, no. 8, pp. 1119–1125. DOI: http://dx.doi.org/10.1134/S0012266108080090.
- Pul’kina L.S. Boundary value problems for a hyperbolic equation with nonlocal conditions of the I and II kind. Russian Mathematics, 2012, vol. 56, no. 4, pp. 62–69. DOI: http://dx.doi.org/10.3103/S1066369X12040081.
- Parasidis I.N., Providas E., Tsekrekos P.C. Factorization of linear operators and some eigenvalue problems of special operators. Bulletin of Bashkir University, 2012, vol. 17, no. 2, pp. 830–839. Available at: https://cyberleninka.ru/article/n/factorization-of-linear-operators-and-some-eigenvalue-problems-of-special-operators/viewer; https://elibrary.ru/item.asp?id=17960431.
- Parasidis I.N., Providas E., Zaoutsos S. On the Solution of Boundary Value Problems for Ordinary Differential Equations of Order n and 2n with General Boundary Conditions. In: Daras N., Rassias T. (eds) Computational Mathematics and Variational Analysis. Springer Optimization and Its Applications, vol. 159. Springer, Cham, pp. 299–314. DOI: http://dx.doi.org/10.1007/978-3-030-44625-3_17.
- Vassiliev N.N., Parasidis I.N., Providas E. Exact solution method for Fredholm integro-differential equations with multipoint and integral boundary conditions. Part 2. Decomposition-extension method for squared operators. Information and Control Systems, 2019, issue 2, pp. 2—9. DOI: http://doi.org/10.31799/1684-8853-2019-2-2-9.
- Providas E., I.N. Parasidis On the solution of some higher-order integro-differential equations of special form. Vestnik Samarskogo universiteta. Estestvennonauchnaia seriia = Vestnik of Samara University. Natural Science Series, 2020, vol. 26, no. 1, pp. 14–22. DOI: http://doi.org/10.18287/2541-7525-2020-26-1-14-22.
- Parassidis I.N., Tsekrekos P.C. Some quadratic correct extensions of minimal operators in Banach space. Operators and Matrices, 2010, vol. 4, no. 2, pp. 225–243. DOI: http://dx.doi.org/10.7153/oam-04-11.
- Parasidis I.N. Extension and decomposition methods for differential and integro-differential equations. Eurasian Mathematical Journal, 2019, vol. 10, no. 3, pp. 48–67. DOI: http://doi.org/10.32523/2077-9879-2019-10-3-48-67.