A PROBLEM WITH AN INTEGRAL CONDITION OF THE FIRST KIND FOR AN EQUATION OF THE FOURTH ORDER



Cite item

Full Text

Abstract

The article deals with a non-local problem with an integral condition for fourth-order pseudo-hyperbolic equation. The equation contains both a mixed derivative and a fourth order derivative in the spatial variable. The integral condition is a condition of the first kind, which leads to difficulties in the study of solvability of a problem. One of the successful methods of overcoming the difficulties of such a plan is the transition from the conditions of the first kind to the conditions of the second kind. The article proves the equivalence of the conditions of the first kind to the conditions of the second kind for this problem. The conditions on the coefficients of the equation and the input data are obtained and they guarantee the existence of a single problem solving. In the literature, such an equation is called the Rayleigh-Bishop equation.

About the authors

A. V. Dyuzheva

Samara State Technical University

Author for correspondence.
Email: morenov@ssau.ru
ORCID iD: 0000-0002-3284-5302

Candidate of Physical and Mathematical Sciences, assistant professor of the Department of Higher Mathematics

Russian Federation

References

  1. Bazant Z., Jirasek M. Nonlocal Integral Formulations of Plasticity and Damage: Survey of Progress. J. Eng. Mech., 2002, Vol. 128, no. 11, pp. 1119–1149. doi: 10.1061/(ASCE) 0733-9399(2002)128:11(1119) .
  2. Cannon J.R. The solution of heat equation subject to the specification of energy. Quart. Appl. Math., 1963, Vol. 21, №2, pp. 155-160. Available at: https://www.ams.org/journals/qam/1963-21-02/S0033-569X-1963-0160437-3/S0033- .
  3. Rao J.S. Advanced Theory of Vibration. N.Y.: Wiley, 1992, pp. 158—184 .
  4. Fedotov I. Hyperbolic models arising in the theory of longitudinal vibration of elastic bars.
  5. The Australian Journal of Mathematical Analysis and Applications, 7 (2), pp. 1-18. Available at:
  6. https: // www.researchgate.net / publication / 235177775_Hyperbolic_Models_Arising_in_the_Theory_of_ .
  7. Strutt J.W. (Lord Rayleigh) Teoriya zvuka . M.: GITTL, 1955, Vol. 1, pp. 273—274. Available at: http://bookre.org/reader?file=580020&pg=1 .
  8. Sobolev S.L. On a New Problem of Mathematical Physics. Izv. Akad. Nauk SSSR Ser. Mat., 1954, no. 18(1), pp. 3–50. Available at: http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=im&paperid=3488&option_lang= .
  9. Beylin A.B., Pulkina L.S. Zadacha o prodol’nykh kolebaniyakh sterzhnya s dinamicheskimi granichnymi usloviyami . Vestnik SamGU. Estestvennonauchnaya seriya , 2014, no. 3(114), pp. 9–19. Available at: http://www.mathnet.ru/php/archive.phtml?jrnid=vsgu&paperid=347&wshow=paper&option_lang=rus .
  10. Beylin A.B., Pulkina L.S. Zadacha s nelokal’nymi dinamicheskimi usloviyami dlya uravneniya kolebanii tolstogo sterzhnya . Vestnik SamGU. Estestvennonauchnaya seriya , 2017, no. 4(23), pp. 7–18. doi: 10.18287/2541-7525-2017-23-4-7-18 .
  11. Beylin S.A. Smeshannaya zadacha s integral’nym usloviem dlya volnovogo uravneniya . Non-classical equations of mathematical physics. Novosibirsk: Izd-vo In-ta matematiki, 2005, pp. 37–43. Available at: http://www.math.nsc.ru/conference/invconf/nemp/2005/articles/beilin.pdf .
  12. Beilina N.V. Nelokal’naya zadacha s integral’nym usloviem dlya uravneniya chetvertogo poryadka . Vestnik SamGU. Estestvennonauchnaya seriya , 2014, Issue 10 (121), pp. 26–37. Available at: https://journals.ssau.ru/index.php/est/article/view/4507.
  13. Bitsadze A.V., Samarskii A.A. O nekotorykh prosteishikh obobshcheniyakh ellipticheskikh zadach . DAN SSSR , 1969, Vol. 185, no. 4, pp. 739-740. Available at: http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=dan& .
  14. Gordeziani D.G., Avalishvili G.A. Reshenie nelokal’nykh zadach dlya odnomernykh kolebanii sredy . Matematicheskoe modelirovanie , 2000, no. 1(12), pp. 95–103. Available at: http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=mm&paperid=832&option_lang=rus .
  15. Demidenko G.V. Usloviya razreshimosti zadachi Koshi dlya psevdogiperbolicheskikh uravnenii Sibirskii matematicheskii zhurnal , 2015, no. 6(56), pp. 1028–1041. doi: 10.17377/smzh.2015.56.607 .
  16. Dmitriev V.B. O edinstvennosti resheniya nelokal’noi zadachi s nelineinym integral’nym usloviem dlya uravneniya chetvertogo poryadka . Vestnik SamGU. Estestvennonauchnaya seriya , 2013, no. 6(107), pp. 13–20. Available at: http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=vsgu&paperid=372&option_lang=rus .
  17. Dmitriev V.B. Kraevaya zadacha s nelokal’nymi granichnymi usloviyami dlya uravneniya chetvertogo poryadka . Vestnik SamGU. Estestvennonauchnaya seriya , 2016, no. 3-4, pp. 32–49. Available at: https://lyceum.ssau.ru/index.php/est/article/view/4256 .
  18. Egorov I.E., Fedotov V.E. Neklassicheskie uravneniya matematicheskoi fiziki vysokogo poryadka . Novosibirsk: Iz-vo VTs SO RAN, 1995, 133 p. .
  19. Zamyshlyaeva A.A. Ob analiticheskom issledovanii matematicheskoi modeli Benni-Lyuka . Matematicheskie zametki YaGU , 2013, no. 2(20), pp. 57–65. Available at: https://www.s-vfu.ru/universitet/ .
  20. Zamyshlyaeva A.A. Matematicheskie modeli sobolevskogo tipa vysokogo poryadka . Vestnik YuUrGU. Ser.: Matematicheskoe modelirovanie i programmirovanie , 2014, no. 2(7), pp. 5-27. Available at: https://dspace.susu.ru/handle/0001.74/5212 .
  21. Ionkin N.I. Reshenie odnoi kraevoi zadachi teorii teploprovodnosti s neklassicheskim kraevym usloviem . Differentsial’nye uravneniya , 1977, no. 2(XII), pp. 294–304. Available at: http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=de&paperid=2993&option_lang=rus.
  22. Kamynin L.I. Ob odnoi kraevoi zadache teorii teploprovodnosti s neklassicheskimi usloviyami . Zhurnal vychislitel’noi matematiki i matematicheskoi fiziki , 1964, Vol. 4, no. 6, pp. 33-59. doi: 10.1016/0041-5553(64)90080-1 .
  23. Kirichenko S.V. Ob odnoi nelokal’noi zadache dlya uravneniya chetvertogo poryadka s dominiruyushchei smeshannoi proizvodnoi . Vestnik Samarskogo universiteta. Estestvennonauchnaya seriya , 2017, no. 2, pp. 26–31. doi: 10.18287/2541-7525-2017-23-2-26-31 .
  24. Kozhanov A.I., Pulkina L.S. O razreshimosti kraevykh zadach s nelokal’nymi granichnymi usloviyami integral’nogo vida dlya mnogomernykh giperbolicheskikh uravnenii . Differentsial’nye uravneniya , 2006, no. 9(42), pp. 1233–1246. doi: 10.1134/S0012266106090023 .
  25. Ladyzhenskaya O.A. Kraevye zadachi matematicheskoi fiziki . М.: Iz-vo Nauka, 1973, 210 p. Available at: http://bookfi.net/book/442669 .
  26. Nakhusheva Z.A. Nelokal’nye kraevye zadachi dlya osnovnykh i smeshennogo tipa differentsial’nykh uravnenii . Nalchik: Iz-vo Ucherezhdeniya RAN Kabardino-Balkarskogo nauchnogo tsentra RAN, 2011, 196 p. .
  27. Pulkina L.S. . Izv. vuzov. Matem. , 2012, no. 10, pp. 26–37. doi: 10.3103/S1066369X12100039 .
  28. Pulkina L.S. Kraevye zadachi dlya giperbolicheskogo uravneniya s nelokal’nymi usloviyami I i II roda . Izv. vuzov. Matem. , 2012, Vol. 56, Issue 4, pp. 62–69. doi: 10.3103/S1066369X12040081 .
  29. Postnov V.A., Kalinin V.S., Rostovtsev D.M. Vibratsiya korablya . L.: Sudostroenie, 1983, 73 p. Available at: http://bookfi.net/book/661639 .
  30. Strigun S.V. Nachal’no-kraevaya zadacha dlya odnomernogo giperbolicheskogo uravneniya s integral’nymi granichnymi usloviem . Vestnik SamGU. Estestvennonauchnaya seriya , 2011, no. 8(89), pp. 95–101. Available at: https://journals.ssau.ru/index.php/est/article/view/4810 .
  31. Tikhonov A.N., Samarskii A.A. Uravneniya matematicheskoi fiziki . M.: Nauka, 2004, 798 p. Available at: http://bookfi.net/book/542871 .
  32. Fedotov I.A., Polyanin A.D., Shatalov M.Yu., Tenkam E.M. Prodol’nye kolebaniya sterzhnya Releya-Bishopa . DAN , 2010, no. 5(435), pp. 613–618. Available at: http://naukarus.com/prodolnye-kolebaniya-sterzhnyareleya- .

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Dyuzheva A.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies