Entanglemnt in nonlinear three-qubits Jaynes — Cummings

Cover Page


Cite item

Full Text

Abstract

In this paper, we investigated the dynamics of entanglement of pairs of qubits in a system of three identical qubits that interact non-resonantly with the selected mode of a microwave resonator without loss with the Kerr medium by means of single-photon transitions. We have found solutions to the quantum time Schrodinger equation for the total wave function of the system for the initial separable, biseparable and true entangled states of qubits and the Fock initial state of the resonator field. Based on these solutions, the criterion of entanglement of qubit pairs — negativity is calculated. The results of numerical simulation of the negativity of qubit pairs have shown that the presence of disorder and Kerr nonlinearity in the case of an initial non-entangled state of a pair of qubits can lead to a significant increase in the degree of their entanglement. In the case of an initial entangled state of a pair of qubits, the disorder and the Kerr medium can lead to a significant stabilization of the initial entanglement.

Full Text

Введение

Исследования многокубитных перепутанных состояний является одной из приоритетных задач квантовой информатики [1 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa83eGaaa@3A70@ 7]. Перепутанные состояния естественных или искусственных атомов (кубитов) необходимы для функционирования таких квантовых устройств, как квантовые компьютеры, квантовые сети и др. [8 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa83eGaaa@3A70@ 16]. Для теоретического и экспериментального описания свойств перепутанных состояний необходимо ввести количественные критерии степени перепутывания кубитов. В настоящее время указанная проблема полностью решена для двухкубитных систем [17 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa83eGaaa@3A70@ 19]. Однако для систем, содержащих более чем два кубита, ситуация более сложная, поскольку для них до настоящего времени не удается ввести аналогичные критерии. Ненулевые значения новых критериев перепутывания, введенных для многокубитных систем, свидетельствуют лишь о наличии перепутанности в системе, но не дают информации о ее конкретной структуре и, следовательно, о возможности использования данных критериев для количественной оценки степени перепутывания кубитов [20; 21]. Проблема состоит еще в том, что существуют несколько неэквивалентных классов перепутанных состояний [22 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa83eGaaa@3A70@ 24]. Для простейшего случая трехкубитной системы для чистых перепутанных состояний обычно выделяют три типа: полностью сепарабельные состояния, бисепарабельные состояния и подлинные перепутанные состояния [25 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa83eGaaa@3A70@ 30]. К последним относятся перепутанные состояния Гринберга MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A71@  Хорна MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A71@  Цайлингера ( GHZ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raiaadI eacaWGAbaaaa@386B@  -состояния) и перепутанные состояния Вернера ( W MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaaaa@36CF@  -состояния). При этом GHZ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raiaadI eacaWGAbaaaa@386B@  -состояния весьма неустойчивы по отношению к потере системой частиц. Такие состояния могут использоваться для детерминированной телепортации или плотного кодирования. Напротив, W MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaaaa@36CF@  -состояния максимально устойчивы не только к потерям частиц, но и к воздействию внешнего шума. Такие состояния могут использоваться при квантовой обработке информации.

В нашей предыдущей работе мы детально исследовали динамику перепутывания в системе трех кубитов, резонансно взаимодействующих с модой квантового электромагнитного поля в идеальном резонаторе [67]. Представляет большой интерес обобщить полученные результаты на случай нерезонансного взаимодействия трех кубитов с электромагнитным полем резонатора с нелинейной средой Керра. Такой интерес обусловлен тем, что в ряде работ на примере двухкубитных моделей было показано, что учет расстройки и нелинейной среды Керра может существенно увеличить степень перепутывания кубитов, индуцированного полем резонатора, в случае сепарабельных начальных состояний кубитов и существенно стабилизировать осцилляции Раби параметра перепутывания кубитов в случае их перепутанного начального состояния [32 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa83eGaaa@3A70@ 36]. Для некоторых начальных состояний кубитов включение расстройки и нелинейности может также приводить к исчезновению эффекта мгновенной смерти перепутывания кубитов.

В настоящей статье мы исследовали динамику системы, состоящей из трех идентичных кубитов, нерезонансно взаимодействующих с модой фоковского квантового электромагнитного поля идеального нелинейного резонатора со средой Керра посредством однофотонных переходов. Полученные решения квантового уравнения эволюции использованы для расчета параметра перепутывания пар кубитов. Для оценки количественной меры перепутывания пар кубитов использовалась отрицательность или параметр Переса MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A71@  Хородецких [17; 18]. 

1. Модель и решение временного уравнения Шредингера

Рассмотрим систему трех идентичных сверхпроводящих кубитов A 1 , A 2 , A 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaaIXaaabeaakiaaiYcacaWGbbWaaSbaaSqaaiaaikdaaeqa aOGaaGilaiaadgeadaWgaaWcbaGaaG4maaqabaaaaa@3C7D@  с энергетической щелью Ω MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeS4dHGMaeu yQdCfaaa@38AA@ , нерезонансно взаимодействующих с модой квантового электромагнитного поля идеального микроволнового компланарного резонатора частоты ω MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdChaaa@37C0@  со средой Керра. Гамильтониан такой модели в системе отсчета вращающейся с частотой моды поля ω MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdChaaa@37C0@  можно представить в виде 

H=(1/2)Δ i=1 3 R i z +γ i=1 3 ( η + R i + R i + η)+Ξ η +2 η 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiaai2 dacaaIOaGaaGymaiaai+cacaaIYaGaaGykaiabl+qiOjabfs5aenaa qahabeWcbaGaamyAaiaai2dacaaIXaaabaGaaG4maaqdcqGHris5aO GaamOuamaaDaaaleaacaWGPbaabaGaamOEaaaakiabgUcaRiabl+qi Ojabeo7aNnaaqahabeWcbaGaamyAaiaai2dacaaIXaaabaGaaG4maa qdcqGHris5aOGaaGikaiabeE7aOnaaCaaaleqabaGaey4kaScaaOGa amOuamaaDaaaleaacaWGPbaabaGaeyOeI0caaOGaey4kaSIaamOuam aaDaaaleaacaWGPbaabaGaey4kaScaaOGaeq4TdGMaaGykaiabgUca Riabl+qiOjabf65ayjabeE7aOnaaCaaaleqabaGaey4kaSIaaGOmaa aakiabeE7aOnaaCaaaleqabaGaaGOmaaaakiaaiYcaaaa@6630@ (1.1)

 где η + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4TdG2aaW baaSqabeaacqGHRaWkaaaaaa@38AE@  ( η MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4TdGgaaa@379F@  ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa83eGaaa@3A70@  оператор рождения (уничтожения) фотонов моды поля, R i + MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaDa aaleaacaWGPbaabaGaey4kaScaaaaa@38C7@  ( R i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaDa aaleaacaWGPbaabaGaeyOeI0caaaaa@38D2@  ) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A71@  операторы перехода из основного | i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiabgk HiTiabgQYiXpaaBaaaleaacaWGPbaabeaaaaa@3AC4@  в возбужденное |+ i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiiFaiabgU caRiabgQYiXpaaBaaaleaacaWGPbaabeaaaaa@3AB9@  (из возбужденного в основное) состояние i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaaaa@36E1@  -го кубита, γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCgaaa@379A@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A71@  параметр кубит-фотонного взаимодействия, Δ=Ωω MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ypaiabfM6axjabgkHiTiabeM8a3baa@3C68@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A71@  расстройка и Ξ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdGfaaa@3777@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A71@  параметр керровской нелинейности.

Выберем в качестве начальных состояний подсистемы кубитов сепарабельные состояния вида

| Φ 1 (0) A 1 A 2 A 3 =|+,,, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiabfA 6agnaaBaaaleaacaaIXaaabeaakiaaiIcacaaIWaGaaGykaiabgQYi XpaaBaaaleaacaWGbbWaaSbaaeaacaaIXaaabeaacaaMi8Uaamyqam aaBaaabaGaaGOmaaqabaGaaGjcVlaadgeadaWgaaqaaiaaiodaaeqa aaqabaGccaaI9aGaaGiFaiabgUcaRiaaiYcacqGHsislcaaISaGaey OeI0IaeyOkJeVaaGilaaaa@4E03@ (1.2)

 бисепарабельные состояния вида

| Φ 2 (0) A 1 A 2 A 3 =cosθ|+,+,+sinθ|+,,+, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiabfA 6agnaaBaaaleaacaaIYaaabeaakiaaiIcacaaIWaGaaGykaiabgQYi XpaaBaaaleaacaWGbbWaaSbaaeaacaaIXaaabeaacaaMi8Uaamyqam aaBaaabaGaaGOmaaqabaGaaGjcVlaadgeadaWgaaqaaiaaiodaaeqa aaqabaGccaaI9aGaci4yaiaac+gacaGGZbGaeqiUdeNaaGiFaiabgU caRiaaiYcacqGHRaWkcaaISaGaeyOeI0IaeyOkJeVaey4kaSIaci4C aiaacMgacaGGUbGaeqiUdeNaaGiFaiabgUcaRiaaiYcacqGHsislca aISaGaey4kaSIaeyOkJeVaaGilaaaa@5EDF@ (1.3)

 а также истинно перепутанные состояния W MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaaaa@36CF@  -типа

| Φ 3 (0) A 1 A 2 A 3 =a|+,+,+b|+,,++c|,+,+, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiabfA 6agnaaBaaaleaacaaIZaaabeaakiaaiIcacaaIWaGaaGykaiabgQYi XpaaBaaaleaacaWGbbWaaSbaaeaacaaIXaaabeaacaaMi8Uaamyqam aaBaaabaGaaGOmaaqabaGaaGjcVlaadgeadaWgaaqaaiaaiodaaeqa aaqabaGccaaI9aGaamyyaiaaiYhacqGHRaWkcaaISaGaey4kaSIaaG ilaiabgkHiTiabgQYiXlabgUcaRiaadkgacaaI8bGaey4kaSIaaGil aiabgkHiTiaaiYcacqGHRaWkcqGHQms8cqGHRaWkcaWGJbGaaGiFai abgkHiTiaaiYcacqGHRaWkcaaISaGaey4kaSIaeyOkJeVaaGilaaaa @604D@ (1.4)

 где

|a | 2 +|b | 2 +|c | 2 =1, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaadg gacaaI8bWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGiFaiaadkga caaI8bWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGiFaiaadogaca aI8bWaaWbaaSqabeaacaaIYaaaaOGaaGypaiaaigdacaaISaaaaa@45A1@

и истинно перепутанные состояния GHZ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raiaadI eacaWGAbaaaa@386B@  -типа

| Φ 4 (0) A 1 A 2 A 3 =d|+,+,++g|,,, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiabfA 6agnaaBaaaleaacaaI0aaabeaakiaaiIcacaaIWaGaaGykaiabgQYi XpaaBaaaleaacaWGbbWaaSbaaeaacaaIXaaabeaacaaMi8Uaamyqam aaBaaabaGaaGOmaaqabaGaaGjcVlaadgeadaWgaaqaaiaaiodaaeqa aaqabaGccaaI9aGaamizaiaaiYhacqGHRaWkcaaISaGaey4kaSIaaG ilaiabgUcaRiabgQYiXlabgUcaRiaadEgacaaI8bGaeyOeI0IaaGil aiabgkHiTiaaiYcacqGHsislcqGHQms8caaISaaaaa@57AA@ (1.5)

где

|d | 2 +|g | 2 =1. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaads gacaaI8bWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGiFaiaadEga caaI8bWaaWbaaSqabeaacaaIYaaaaOGaaGypaiaaigdacaaIUaaaaa@40E2@

В качестве начального состояния поля резонатора выберем фоковские состояния вида

|Φ(0) F =|n(n=0,1,2,). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiabfA 6agjaaiIcacaaIWaGaaGykaiabgQYiXpaaBaaaleaacaWGgbaabeaa kiaai2dacaaI8bGaamOBaiabgQYiXlaaywW7caaMf8UaaGikaiaad6 gacaaI9aGaaGimaiaaiYcacaaIXaGaaGilaiaaikdacaaISaGaeS47 IWKaaGykaiaai6caaaa@4F1B@

Для описания динамики рассматриваемой системы нам необходимо найти временную волновую функцию системы. Введем для нашей системы число возбуждений N MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaaaa@36C6@ , равное N= n 1 +n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaiaai2 dacaWGUbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaamOBaaaa@3B46@ , где n 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaaIXaaabeaaaaa@37CD@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa83eGaaa@3A70@  число кубитов, приготовленных в возбужденном состоянии. Для чисел возбуждения N3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaiabgw MiZkaaiodaaaa@3949@  будем использовать следующие базисные векторы: 

|+,+,+,n,|+,+,,n+1,|+,,+,n+1,|,+,+,n+1, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiabgU caRiaaiYcacqGHRaWkcaaISaGaey4kaSIaaGilaiaad6gacqGHQms8 caaISaGaaGiFaiabgUcaRiaaiYcacqGHRaWkcaaISaGaeyOeI0IaaG ilaiaad6gacqGHRaWkcaaIXaGaeyOkJeVaaGilaiaaiYhacqGHRaWk caaISaGaeyOeI0IaaGilaiabgUcaRiaaiYcacaWGUbGaey4kaSIaaG ymaiabgQYiXlaaiYcacaaI8bGaeyOeI0IaaGilaiabgUcaRiaaiYca cqGHRaWkcaaISaGaamOBaiabgUcaRiaaigdacqGHQms8caaISaaaaa@5FEF@  

|+,,,n+2,|,+,,n+2,|,,+n+2,|,,,n+3. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiabgU caRiaaiYcacqGHsislcaaISaGaeyOeI0IaaGilaiaad6gacqGHRaWk caaIYaGaeyOkJeVaaGilaiaaiYhacqGHsislcaaISaGaey4kaSIaaG ilaiabgkHiTiaaiYcacaWGUbGaey4kaSIaaGOmaiabgQYiXlaaiYca caaI8bGaeyOeI0IaaGilaiabgkHiTiaaiYcacqGHRaWkcaWGUbGaey 4kaSIaaGOmaiabgQYiXlaaiYcacaaI8bGaeyOeI0IaaGilaiabgkHi TiaaiYcacqGHsislcaaISaGaamOBaiabgUcaRiaaiodacqGHQms8ca aIUaaaaa@611F@

Тогда для начальных состояний кубитов (1.2) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa83eGaaa@3A70@ (1.5) волновая функция в последующие моменты времени t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaaaa@36EC@  может быть записана следующим образом:

|ψ (t) A 1 A 2 A 3 F 1 = B 1 (t)|+,+,+,n+ B 2 (t)|+,+,,n+1+ B 3 (t)|+,,+,n+1+ B 4 (t)|,+,+,n+1+ + B 5 (t)|+,,,n+2+ B 6 (t)|,+,,n+2+ B 7 (t)|,,+,n+2+ B 8 (t)|,,,n+3. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaaiaaiYhacqaHipqEcaaIOaGaamiDaiaaiMcadaWgaaWcbaGaamyq amaaBaaabaGaaGymaaqabaGaaGjcVlaadgeadaWgaaqaaiaaikdaae qaaiaayIW7caWGbbWaaSbaaeaacaaIZaaabeaacaaMi8UaamOraaqa baGccqGHQms8daWgaaWcbaGaaGymaaqabaGccaaI9aGaamOqamaaBa aaleaacaaIXaaabeaakiaaiIcacaWG0bGaaGykaiaaiYhacqGHRaWk caaISaGaey4kaSIaaGilaiabgUcaRiaaiYcacaWGUbGaeyOkJeVaey 4kaSIaamOqamaaBaaaleaacaaIYaaabeaakiaaiIcacaWG0bGaaGyk aiaaiYhacqGHRaWkcaaISaGaey4kaSIaaGilaiabgkHiTiaaiYcaca WGUbGaey4kaSIaaGymaiabgQYiXlabgUcaRiaadkeadaWgaaWcbaGa aG4maaqabaGccaaIOaGaamiDaiaaiMcacaaI8bGaey4kaSIaaGilai abgkHiTiaaiYcacqGHRaWkcaaISaGaamOBaiabgUcaRiaaigdacqGH Qms8cqGHRaWkcaWGcbWaaSbaaSqaaiaaisdaaeqaaOGaaGikaiaads hacaaIPaGaaGiFaiabgkHiTiaaiYcacqGHRaWkcaaISaGaey4kaSIa aGilaiaad6gacqGHRaWkcaaIXaGaeyOkJeVaey4kaScabaGaey4kaS IaamOqamaaBaaaleaacaaI1aaabeaakiaaiIcacaWG0bGaaGykaiaa iYhacqGHRaWkcaaISaGaeyOeI0IaaGilaiabgkHiTiaaiYcacaWGUb Gaey4kaSIaaGOmaiabgQYiXlabgUcaRiaadkeadaWgaaWcbaGaaGOn aaqabaGccaaIOaGaamiDaiaaiMcacaaI8bGaeyOeI0IaaGilaiabgU caRiaaiYcacqGHsislcaaISaGaamOBaiabgUcaRiaaikdacqGHQms8 cqGHRaWkcaWGcbWaaSbaaSqaaiaaiEdaaeqaaOGaaGikaiaadshaca aIPaGaaGiFaiabgkHiTiaaiYcacqGHsislcaaISaGaey4kaSIaaGil aiaad6gacqGHRaWkcaaIYaGaeyOkJeVaey4kaSIaamOqamaaBaaale aacaaI4aaabeaakiaaiIcacaWG0bGaaGykaiaaiYhacqGHsislcaaI SaGaeyOeI0IaaGilaiabgkHiTiaaiYcacaWGUbGaey4kaSIaaG4mai abgQYiXlaai6caaaaaaa@C211@ (1.6)

Для описания динамики рассматриваемой системы с гамильтонианом (1.1) необходимо решить квантовое уравнение Шредингера

i |ψ(t) t =H|ψ(t). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiabl+ qiOnaalaaabaGaeyOaIyRaaGiFaiabeI8a5jaaiIcacaWG0bGaaGyk aiabgQYiXdqaaiabgkGi2kaadshaaaGaaGypaiaadIeacaaI8bGaeq iYdKNaaGikaiaadshacaaIPaGaeyOkJeVaaGOlaaaa@4C23@

Подставляя в это уравнение волновую функцию вида (1.6), получаем для коэффициентов B i (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqamaaBa aaleaacaWGPbaabeaakiaaiIcacaWG0bGaaGykaaaa@3A3C@  

i B ˙ 1 (t)=γ n+1 ( B 4 (t)+ B 3 (t)+ B 2 (t))+Ξn(n1) B 1 (t)+ 3Δ 2 B 1 (t), i B ˙ 2 (t)=γ( n+2 B 6 (t)+ n+2 B 5 (t)+ n+1 B 1 (t))+Ξ B 2 (t)n(n+1)+ Δ 2 B 2 (t), i B ˙ 3 (t)=γ( n+2 B 7 (t)+ n+2 B 5 (t)+ n+1 B 1 (t))+Ξ B 3 (t)n(n+1)+ Δ 2 B 3 (t), i B ˙ 4 (t)=γ( n+1 B 1 (t)+ B 7 (t) n+2 + B 6 (t) n+2 )+Ξ B 4 (t)n(n+1)+ Δ 2 B 4 (t), i B ˙ 5 (t)=γ( B 8 (t) n+3 + n+2 B 2 (t)+ n+2 B 3 (t))+Ξ B 5 (t)(n+2)(n+1) Δ 2 B 5 (t), i B ˙ 6 (t)=γ( B 2 (t) n+2 + B 4 (t) n+2 + B 8 (t) n+3 )+Ξ B 6 (t)(n+2)(n+1) Δ 2 B 6 (t), i B ˙ 7 (t)=γ( B 4 (t) n+2 + n+3 B 8 (t)+ B 3 (t) n+2 )+Ξ B 7 (t)(n+2)(n+1) Δ 2 B 7 (t), i B ˙ 8 (t)=γ n+3 ( B 5 (t)+ B 6 (t)+ B 7 (t))+Ξ B 8 (t)(n+3)(n+2) 3Δ 2 B 8 (t). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiqaaeaafa qaaeaccaaaaaqaaiaaywW7caWGPbGabmOqayaacaWaaSbaaSqaaiaa igdaaeqaaOGaaGikaiaadshacaaIPaGaaGypaiabeo7aNnaakaaaba GaamOBaiabgUcaRiaaigdaaSqabaGccaaIOaGaamOqamaaBaaaleaa caaI0aaabeaakiaaiIcacaWG0bGaaGykaiabgUcaRiaadkeadaWgaa WcbaGaaG4maaqabaGccaaIOaGaamiDaiaaiMcacqGHRaWkcaWGcbWa aSbaaSqaaiaaikdaaeqaaOGaaGikaiaadshacaaIPaGaaGykaiabgU caRiabf65ayjaad6gacaaIOaGaamOBaiabgkHiTiaaigdacaaIPaGa amOqamaaBaaaleaacaaIXaaabeaakiaaiIcacaWG0bGaaGykaiabgU caRmaalaaabaGaaG4maiabfs5aebqaaiaaikdaaaGaamOqamaaBaaa leaacaaIXaaabeaakiaaiIcacaWG0bGaaGykaiaaiYcaaeaaaeaaca aMf8UaamyAaiqadkeagaGaamaaBaaaleaacaaIYaaabeaakiaaiIca caWG0bGaaGykaiaai2dacqaHZoWzcaaIOaWaaOaaaeaacaWGUbGaey 4kaSIaaGOmaaWcbeaakiaadkeadaWgaaWcbaGaaGOnaaqabaGccaaI OaGaamiDaiaaiMcacqGHRaWkdaGcaaqaaiaad6gacqGHRaWkcaaIYa aaleqaaOGaamOqamaaBaaaleaacaaI1aaabeaakiaaiIcacaWG0bGa aGykaiabgUcaRmaakaaabaGaamOBaiabgUcaRiaaigdaaSqabaGcca WGcbWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadshacaaIPaGaaGyk aiabgUcaRiabf65ayjaadkeadaWgaaWcbaGaaGOmaaqabaGccaaIOa GaamiDaiaaiMcacaWGUbGaaGikaiaad6gacqGHRaWkcaaIXaGaaGyk aiabgUcaRmaalaaabaGaeuiLdqeabaGaaGOmaaaacaWGcbWaaSbaaS qaaiaaikdaaeqaaOGaaGikaiaadshacaaIPaGaaGilaaqaaaqaaiaa ywW7caWGPbGabmOqayaacaWaaSbaaSqaaiaaiodaaeqaaOGaaGikai aadshacaaIPaGaaGypaiabeo7aNjaaiIcadaGcaaqaaiaad6gacqGH RaWkcaaIYaaaleqaaOGaamOqamaaBaaaleaacaaI3aaabeaakiaaiI cacaWG0bGaaGykaiabgUcaRmaakaaabaGaamOBaiabgUcaRiaaikda aSqabaGccaWGcbWaaSbaaSqaaiaaiwdaaeqaaOGaaGikaiaadshaca aIPaGaey4kaSYaaOaaaeaacaWGUbGaey4kaSIaaGymaaWcbeaakiaa dkeadaWgaaWcbaGaaGymaaqabaGccaaIOaGaamiDaiaaiMcacaaIPa Gaey4kaSIaeuONdGLaamOqamaaBaaaleaacaaIZaaabeaakiaaiIca caWG0bGaaGykaiaad6gacaaIOaGaamOBaiabgUcaRiaaigdacaaIPa Gaey4kaSYaaSaaaeaacqqHuoaraeaacaaIYaaaaiaadkeadaWgaaWc baGaaG4maaqabaGccaaIOaGaamiDaiaaiMcacaaISaaabaaabaGaaG zbVlaadMgaceWGcbGbaiaadaWgaaWcbaGaaGinaaqabaGccaaIOaGa amiDaiaaiMcacaaI9aGaeq4SdCMaaGikamaakaaabaGaamOBaiabgU caRiaaigdaaSqabaGccaWGcbWaaSbaaSqaaiaaigdaaeqaaOGaaGik aiaadshacaaIPaGaey4kaSIaamOqamaaBaaaleaacaaI3aaabeaaki aaiIcacaWG0bGaaGykamaakaaabaGaamOBaiabgUcaRiaaikdaaSqa baGccqGHRaWkcaWGcbWaaSbaaSqaaiaaiAdaaeqaaOGaaGikaiaads hacaaIPaWaaOaaaeaacaWGUbGaey4kaSIaaGOmaaWcbeaakiaaiMca cqGHRaWkcqqHEoawcaWGcbWaaSbaaSqaaiaaisdaaeqaaOGaaGikai aadshacaaIPaGaamOBaiaaiIcacaWGUbGaey4kaSIaaGymaiaaiMca cqGHRaWkdaWcaaqaaiabfs5aebqaaiaaikdaaaGaamOqamaaBaaale aacaaI0aaabeaakiaaiIcacaWG0bGaaGykaiaaiYcaaeaaaeaacaaM f8UaamyAaiqadkeagaGaamaaBaaaleaacaaI1aaabeaakiaaiIcaca WG0bGaaGykaiaai2dacqaHZoWzcaaIOaGaamOqamaaBaaaleaacaaI 4aaabeaakiaaiIcacaWG0bGaaGykamaakaaabaGaamOBaiabgUcaRi aaiodaaSqabaGccqGHRaWkdaGcaaqaaiaad6gacqGHRaWkcaaIYaaa leqaaOGaamOqamaaBaaaleaacaaIYaaabeaakiaaiIcacaWG0bGaaG ykaiabgUcaRmaakaaabaGaamOBaiabgUcaRiaaikdaaSqabaGccaWG cbWaaSbaaSqaaiaaiodaaeqaaOGaaGikaiaadshacaaIPaGaaGykai abgUcaRiabf65ayjaadkeadaWgaaWcbaGaaGynaaqabaGccaaIOaGa amiDaiaaiMcacaaIOaGaamOBaiabgUcaRiaaikdacaaIPaGaaGikai aad6gacqGHRaWkcaaIXaGaaGykaiabgkHiTmaalaaabaGaeuiLdqea baGaaGOmaaaacaWGcbWaaSbaaSqaaiaaiwdaaeqaaOGaaGikaiaads hacaaIPaGaaGilaaqaaaqaaiaaywW7caWGPbGabmOqayaacaWaaSba aSqaaiaaiAdaaeqaaOGaaGikaiaadshacaaIPaGaaGypaiabeo7aNj aaiIcacaWGcbWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadshacaaI PaWaaOaaaeaacaWGUbGaey4kaSIaaGOmaaWcbeaakiabgUcaRiaadk eadaWgaaWcbaGaaGinaaqabaGccaaIOaGaamiDaiaaiMcadaGcaaqa aiaad6gacqGHRaWkcaaIYaaaleqaaOGaey4kaSIaamOqamaaBaaale aacaaI4aaabeaakiaaiIcacaWG0bGaaGykamaakaaabaGaamOBaiab gUcaRiaaiodaaSqabaGccaaIPaGaey4kaSIaeuONdGLaamOqamaaBa aaleaacaaI2aaabeaakiaaiIcacaWG0bGaaGykaiaaiIcacaWGUbGa ey4kaSIaaGOmaiaaiMcacaaIOaGaamOBaiabgUcaRiaaigdacaaIPa GaeyOeI0YaaSaaaeaacqqHuoaraeaacaaIYaaaaiaadkeadaWgaaWc baGaaGOnaaqabaGccaaIOaGaamiDaiaaiMcacaaISaaabaaabaGaaG zbVlaadMgaceWGcbGbaiaadaWgaaWcbaGaaG4naaqabaGccaaIOaGa amiDaiaaiMcacaaI9aGaeq4SdCMaaGikaiaadkeadaWgaaWcbaGaaG inaaqabaGccaaIOaGaamiDaiaaiMcadaGcaaqaaiaad6gacqGHRaWk caaIYaaaleqaaOGaey4kaSYaaOaaaeaacaWGUbGaey4kaSIaaG4maa WcbeaakiaadkeadaWgaaWcbaGaaGioaaqabaGccaaIOaGaamiDaiaa iMcacqGHRaWkcaWGcbWaaSbaaSqaaiaaiodaaeqaaOGaaGikaiaads hacaaIPaWaaOaaaeaacaWGUbGaey4kaSIaaGOmaaWcbeaakiaaiMca cqGHRaWkcqqHEoawcaWGcbWaaSbaaSqaaiaaiEdaaeqaaOGaaGikai aadshacaaIPaGaaGikaiaad6gacqGHRaWkcaaIYaGaaGykaiaaiIca caWGUbGaey4kaSIaaGymaiaaiMcacqGHsisldaWcaaqaaiabfs5aeb qaaiaaikdaaaGaamOqamaaBaaaleaacaaI3aaabeaakiaaiIcacaWG 0bGaaGykaiaaiYcaaeaaaeaacaaMf8UaamyAaiqadkeagaGaamaaBa aaleaacaaI4aaabeaakiaaiIcacaWG0bGaaGykaiaai2dacqaHZoWz daGcaaqaaiaad6gacqGHRaWkcaaIZaaaleqaaOGaaGikaiaadkeada WgaaWcbaGaaGynaaqabaGccaaIOaGaamiDaiaaiMcacqGHRaWkcaWG cbWaaSbaaSqaaiaaiAdaaeqaaOGaaGikaiaadshacaaIPaGaey4kaS IaamOqamaaBaaaleaacaaI3aaabeaakiaaiIcacaWG0bGaaGykaiaa iMcacqGHRaWkcqqHEoawcaWGcbWaaSbaaSqaaiaaiIdaaeqaaOGaaG ikaiaadshacaaIPaGaaGikaiaad6gacqGHRaWkcaaIZaGaaGykaiaa iIcacaWGUbGaey4kaSIaaGOmaiaaiMcacqGHsisldaWcaaqaaiaaio dacqqHuoaraeaacaaIYaaaaiaadkeadaWgaaWcbaGaaGioaaqabaGc caaIOaGaamiDaiaaiMcacaaIUaaabaaaaaGaay5Eaaaaaa@D98F@ (1.7)

Для числа возбуждений N=2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaiaai2 dacaaIYaaaaa@3849@  будем использовать следующие базисные векторы: 

|+,+,,0,|+,,+,0,>|,+,+,0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiabgU caRiaaiYcacqGHRaWkcaaISaGaeyOeI0IaaGilaiaaicdacqGHQms8 caaISaGaaGiFaiabgUcaRiaaiYcacqGHsislcaaISaGaey4kaSIaaG ilaiaaicdacqGHQms8caaISaGaaGOpaiaaiYhacqGHsislcaaISaGa ey4kaSIaaGilaiabgUcaRiaaiYcacaaIWaGaeyOkJeVaaGilaaaa@51F4@  

|+,,,1,|,+,,1,|,,+1,|,,,2. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiabgU caRiaaiYcacqGHsislcaaISaGaeyOeI0IaaGilaiaaigdacqGHQms8 caaISaGaaGiFaiabgkHiTiaaiYcacqGHRaWkcaaISaGaeyOeI0IaaG ilaiaaigdacqGHQms8caaISaGaaGiFaiabgkHiTiaaiYcacqGHsisl caaISaGaey4kaSIaaGymaiabgQYiXlaaiYcacaaI8bGaeyOeI0IaaG ilaiabgkHiTiaaiYcacqGHsislcaaISaGaaGOmaiabgQYiXlaai6ca aaa@59C7@

В рассматриваемом случае временная волновая функция может быть записана следующим образом: 

| ψ A 1 A 2 A 3 F (t) 2 = x 1 (t)|+,+,;0+ x 2 (t)|+,,+;0+ x 3 (t)|,+,+;0+ x 4 (t)|+,,;1+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiabeI 8a5naaBaaaleaacaWGbbWaaSbaaeaacaaIXaaabeaacaaMi8Uaamyq amaaBaaabaGaaGOmaaqabaGaaGjcVlaadgeadaWgaaqaaiaaiodaae qaaiaayIW7caWGgbaabeaakiaaiIcacaWG0bGaaGykaiabgQYiXpaa BaaaleaacaaIYaaabeaakiaai2dacaWG4bWaaSbaaSqaaiaaigdaae qaaOGaaGikaiaadshacaaIPaGaaGiFaiabgUcaRiaaiYcacqGHRaWk caaISaGaeyOeI0IaaG4oaiaaicdacqGHQms8cqGHRaWkcaWG4bWaaS baaSqaaiaaikdaaeqaaOGaaGikaiaadshacaaIPaGaaGiFaiabgUca RiaaiYcacqGHsislcaaISaGaey4kaSIaaG4oaiaaicdacqGHQms8cq GHRaWkcaWG4bWaaSbaaSqaaiaaiodaaeqaaOGaaGikaiaadshacaaI PaGaaGiFaiabgkHiTiaaiYcacqGHRaWkcaaISaGaey4kaSIaaG4oai aaicdacqGHQms8cqGHRaWkcaWG4bWaaSbaaSqaaiaaisdaaeqaaOGa aGikaiaadshacaaIPaGaaGiFaiabgUcaRiaaiYcacqGHsislcaaISa GaeyOeI0IaaG4oaiaaigdacqGHQms8cqGHRaWkaaa@7FBF@

+ x 5 (t)|,+,;1+ x 6 (t)|,,+;1+ x 7 (t)|,,;2. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSIaam iEamaaBaaaleaacaaI1aaabeaakiaaiIcacaWG0bGaaGykaiaaiYha cqGHsislcaaISaGaey4kaSIaaGilaiabgkHiTiaaiUdacaaIXaGaey OkJeVaey4kaSIaamiEamaaBaaaleaacaaI2aaabeaakiaaiIcacaWG 0bGaaGykaiaaiYhacqGHsislcaaISaGaeyOeI0IaaGilaiabgUcaRi aaiUdacaaIXaGaeyOkJeVaey4kaSIaamiEamaaBaaaleaacaaI3aaa beaakiaaiIcacaWG0bGaaGykaiaaiYhacqGHsislcaaISaGaeyOeI0 IaaGilaiabgkHiTiaaiUdacaaIYaGaeyOkJeVaaGOlaaaa@5FB8@ (1.8)

 Система дифференциальных уравнений для коэффициентов x i (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaWGPbaabeaakiaaiIcacaWG0bGaaGykaaaa@3A72@  получается аналогично предыдущему случаю: 

i x ˙ 1 (t)=γ( x 5 (t)+ x 4 (t))+ Δ 2 x 1 (t), i x ˙ 2 (t)=γ( x 6 (t)+ x 4 (t))+ Δ 2 x 2 (t), i x ˙ 3 (t)=γ( x 6 (t)+ x 5 (t))+ Δ 2 x 3 (t), i x ˙ 4 (t)=γ( 2 x 7 (t)+ x 1 (t)+ x 2 (t)) Δ 2 x 4 (t), i x ˙ 5 (t)=γ( 2 x 7 (t)+ x 1 (t)+ x 3 (t)) Δ 2 x 5 (t), i x ˙ 6 (t)=γ( 2 x 7 (t)+ x 2 (t)+ x 3 (t)) Δ 2 x 6 (t), i x ˙ 7 (t)=γ 2 ( x 4 (t)+ x 5 (t)+ x 6 (t)) 3Δ 2 x 7 (t)+2Ξ x 7 (t). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiqaaeaafa qaaeWbcaaaaeaacaaMf8UaamyAaiqadIhagaGaamaaBaaaleaacaaI XaaabeaakiaaiIcacaWG0bGaaGykaiaai2dacqaHZoWzcaaIOaGaam iEamaaBaaaleaacaaI1aaabeaakiaaiIcacaWG0bGaaGykaiabgUca RiaadIhadaWgaaWcbaGaaGinaaqabaGccaaIOaGaamiDaiaaiMcaca aIPaGaey4kaSYaaSaaaeaacqqHuoaraeaacaaIYaaaaiaadIhadaWg aaWcbaGaaGymaaqabaGccaaIOaGaamiDaiaaiMcacaaISaaabaaaba GaaGzbVlaadMgaceWG4bGbaiaadaWgaaWcbaGaaGOmaaqabaGccaaI OaGaamiDaiaaiMcacaaI9aGaeq4SdCMaaGikaiaadIhadaWgaaWcba GaaGOnaaqabaGccaaIOaGaamiDaiaaiMcacqGHRaWkcaWG4bWaaSba aSqaaiaaisdaaeqaaOGaaGikaiaadshacaaIPaGaaGykaiabgUcaRm aalaaabaGaeuiLdqeabaGaaGOmaaaacaWG4bWaaSbaaSqaaiaaikda aeqaaOGaaGikaiaadshacaaIPaGaaGilaaqaaaqaaiaaywW7caWGPb GabmiEayaacaWaaSbaaSqaaiaaiodaaeqaaOGaaGikaiaadshacaaI PaGaaGypaiabeo7aNjaaiIcacaWG4bWaaSbaaSqaaiaaiAdaaeqaaO GaaGikaiaadshacaaIPaGaey4kaSIaamiEamaaBaaaleaacaaI1aaa beaakiaaiIcacaWG0bGaaGykaiaaiMcacqGHRaWkdaWcaaqaaiabfs 5aebqaaiaaikdaaaGaamiEamaaBaaaleaacaaIZaaabeaakiaaiIca caWG0bGaaGykaiaaiYcaaeaaaeaacaaMf8UaamyAaiqadIhagaGaam aaBaaaleaacaaI0aaabeaakiaaiIcacaWG0bGaaGykaiaai2dacqaH ZoWzcaaIOaWaaOaaaeaacaaIYaaaleqaaOGaamiEamaaBaaaleaaca aI3aaabeaakiaaiIcacaWG0bGaaGykaiabgUcaRiaadIhadaWgaaWc baGaaGymaaqabaGccaaIOaGaamiDaiaaiMcacqGHRaWkcaWG4bWaaS baaSqaaiaaikdaaeqaaOGaaGikaiaadshacaaIPaGaaGykaiabgkHi TmaalaaabaGaeuiLdqeabaGaaGOmaaaacaWG4bWaaSbaaSqaaiaais daaeqaaOGaaGikaiaadshacaaIPaGaaGilaaqaaaqaaiaaywW7caWG PbGabmiEayaacaWaaSbaaSqaaiaaiwdaaeqaaOGaaGikaiaadshaca aIPaGaaGypaiabeo7aNjaaiIcadaGcaaqaaiaaikdaaSqabaGccaWG 4bWaaSbaaSqaaiaaiEdaaeqaaOGaaGikaiaadshacaaIPaGaey4kaS IaamiEamaaBaaaleaacaaIXaaabeaakiaaiIcacaWG0bGaaGykaiab gUcaRiaadIhadaWgaaWcbaGaaG4maaqabaGccaaIOaGaamiDaiaaiM cacaaIPaGaeyOeI0YaaSaaaeaacqqHuoaraeaacaaIYaaaaiaadIha daWgaaWcbaGaaGynaaqabaGccaaIOaGaamiDaiaaiMcacaaISaaaba aabaGaaGzbVlaadMgaceWG4bGbaiaadaWgaaWcbaGaaGOnaaqabaGc caaIOaGaamiDaiaaiMcacaaI9aGaeq4SdCMaaGikamaakaaabaGaaG OmaaWcbeaakiaadIhadaWgaaWcbaGaaG4naaqabaGccaaIOaGaamiD aiaaiMcacqGHRaWkcaWG4bWaaSbaaSqaaiaaikdaaeqaaOGaaGikai aadshacaaIPaGaey4kaSIaamiEamaaBaaaleaacaaIZaaabeaakiaa iIcacaWG0bGaaGykaiaaiMcacqGHsisldaWcaaqaaiabfs5aebqaai aaikdaaaGaamiEamaaBaaaleaacaaI2aaabeaakiaaiIcacaWG0bGa aGykaiaaiYcaaeaaaeaacaaMf8UaamyAaiqadIhagaGaamaaBaaale aacaaI3aaabeaakiaaiIcacaWG0bGaaGykaiaai2dacqaHZoWzdaGc aaqaaiaaikdaaSqabaGccaaIOaGaamiEamaaBaaaleaacaaI0aaabe aakiaaiIcacaWG0bGaaGykaiabgUcaRiaadIhadaWgaaWcbaGaaGyn aaqabaGccaaIOaGaamiDaiaaiMcacqGHRaWkcaWG4bWaaSbaaSqaai aaiAdaaeqaaOGaaGikaiaadshacaaIPaGaaGykaiabgkHiTmaalaaa baGaaG4maiabfs5aebqaaiaaikdaaaGaamiEamaaBaaaleaacaaI3a aabeaakiaaiIcacaWG0bGaaGykaiabgUcaRiaaikdacqqHEoawcaWG 4bWaaSbaaSqaaiaaiEdaaeqaaOGaaGikaiaadshacaaIPaGaaGOlaa qaaaaaaiaawUhaaaaa@1D98@ (1.9)

Для числа возбуждений N=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaiaai2 dacaaIXaaaaa@3848@  выбираем базис гильбертова пространства в виде:

|+,,,0,|,+,,0,|,,+,0,|,,,1. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiabgU caRiaaiYcacqGHsislcaaISaGaeyOeI0IaaGilaiaaicdacqGHQms8 caaISaGaaGiFaiabgkHiTiaaiYcacqGHRaWkcaaISaGaeyOeI0IaaG ilaiaaicdacqGHQms8caaISaGaaGiFaiabgkHiTiaaiYcacqGHsisl caaISaGaey4kaSIaaGilaiaaicdacqGHQms8caaISaGaaGiFaiabgk HiTiaaiYcacqGHsislcaaISaGaeyOeI0IaaGilaiaaigdacqGHQms8 caaIUaaaaa@5A79@

Волновая функция для числа возбуждений N=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaiaai2 dacaaIXaaaaa@3848@  записывается следующим образом:

|ψ (t) A 1 A 2 A 3 F 3 = y 1 (t)|+,,;0+ y 2 (t)|,+,;0+ y 3 (t)|,,+;0+ y 4 (t)|,,;1. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiabeI 8a5jaaiIcacaWG0bGaaGykamaaBaaaleaacaWGbbWaaSbaaeaacaaI XaaabeaacaaMi8UaamyqamaaBaaabaGaaGOmaaqabaGaaGjcVlaadg eadaWgaaqaaiaaiodaaeqaaiaayIW7caWGgbaabeaakiabgQYiXpaa BaaaleaacaaIZaaabeaakiaai2dacaWG5bWaaSbaaSqaaiaaigdaae qaaOGaaGikaiaadshacaaIPaGaaGiFaiabgUcaRiaaiYcacqGHsisl caaISaGaeyOeI0IaaG4oaiaaicdacqGHQms8cqGHRaWkcaWG5bWaaS baaSqaaiaaikdaaeqaaOGaaGikaiaadshacaaIPaGaaGiFaiabgkHi TiaaiYcacqGHRaWkcaaISaGaeyOeI0IaaG4oaiaaicdacqGHQms8cq GHRaWkcaWG5bWaaSbaaSqaaiaaiodaaeqaaOGaaGikaiaadshacaaI PaGaaGiFaiabgkHiTiaaiYcacqGHsislcaaISaGaey4kaSIaaG4oai aaicdacqGHQms8cqGHRaWkcaWG5bWaaSbaaSqaaiaaisdaaeqaaOGa aGikaiaadshacaaIPaGaaGiFaiabgkHiTiaaiYcacqGHsislcaaISa GaeyOeI0IaaG4oaiaaigdacqGHQms8caaIUaaaaa@7FC6@ (1.10)

Соответствующая система дифференциальных уравнений для коэффициентов y i (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGPbaabeaakiaaiIcacaWG0bGaaGykaaaa@3A73@  будет следующей:

i y ˙ 1 (t)=γ y 4 (t) Δ 2 y 1 (t), i y ˙ 2 (t)=γ y 4 (t) Δ 2 y 2 (t), i y ˙ 3 (t)=γ y 4 (t) Δ 2 y 3 (t), i y ˙ 4 (t)=γ( y 1 (t)+ y 2 (t)+ y 3 (t)) 3Δ 2 y 4 (t). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiqaaeaafa qaaeabcaaaaeaacaaMf8UaamyAaiqadMhagaGaamaaBaaaleaacaaI XaaabeaakiaaiIcacaWG0bGaaGykaiaai2dacqaHZoWzcaWG5bWaaS baaSqaaiaaisdaaeqaaOGaaGikaiaadshacaaIPaGaeyOeI0YaaSaa aeaacqqHuoaraeaacaaIYaaaaiaadMhadaWgaaWcbaGaaGymaaqaba GccaaIOaGaamiDaiaaiMcacaaISaaabaaabaGaaGzbVlaadMgaceWG 5bGbaiaadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaamiDaiaaiMcaca aI9aGaeq4SdCMaamyEamaaBaaaleaacaaI0aaabeaakiaaiIcacaWG 0bGaaGykaiabgkHiTmaalaaabaGaeuiLdqeabaGaaGOmaaaacaWG5b WaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadshacaaIPaGaaGilaaqa aaqaaiaaywW7caWGPbGabmyEayaacaWaaSbaaSqaaiaaiodaaeqaaO GaaGikaiaadshacaaIPaGaaGypaiabeo7aNjaadMhadaWgaaWcbaGa aGinaaqabaGccaaIOaGaamiDaiaaiMcacqGHsisldaWcaaqaaiabfs 5aebqaaiaaikdaaaGaamyEamaaBaaaleaacaaIZaaabeaakiaaiIca caWG0bGaaGykaiaaiYcaaeaaaeaacaaMf8UaamyAaiqadMhagaGaam aaBaaaleaacaaI0aaabeaakiaaiIcacaWG0bGaaGykaiaai2dacqaH ZoWzcaaIOaGaamyEamaaBaaaleaacaaIXaaabeaakiaaiIcacaWG0b GaaGykaiabgUcaRiaadMhadaWgaaWcbaGaaGOmaaqabaGccaaIOaGa amiDaiaaiMcacqGHRaWkcaWG5bWaaSbaaSqaaiaaiodaaeqaaOGaaG ikaiaadshacaaIPaGaaGykaiabgkHiTmaalaaabaGaaG4maiabfs5a ebqaaiaaikdaaaGaamyEamaaBaaaleaacaaI0aaabeaakiaaiIcaca WG0bGaaGykaiaai6caaeaaaaaacaGL7baaaaa@9A78@ (1.11)

Наконец для N=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaiaai2 dacaaIWaaaaa@3847@  базис гильбертова пространства составляет вектор |,,,0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiabgk HiTiaaiYcacqGHsislcaaISaGaeyOeI0IaaGilaiaaicdacqGHQms8 aaa@3E66@ . Соответствующая временная волновая функция есть

| ψ A 1 A 2 A 3 F (t) 4 =|,,,0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiabeI 8a5naaBaaaleaacaWGbbWaaSbaaeaacaaIXaaabeaacaaMi8Uaamyq amaaBaaabaGaaGOmaaqabaGaaGjcVlaadgeadaWgaaqaaiaaiodaae qaaiaayIW7caWGgbaabeaakiaaiIcacaWG0bGaaGykaiabgQYiXpaa BaaaleaacaaI0aaabeaakiaai2dacaaI8bGaeyOeI0IaaGilaiabgk HiTiaaiYcacqGHsislcaaISaGaaGimaiabgQYiXlaai6caaaa@5272@ (1.12) 

В работе [67] для модели с нулевой расстройкой и в отсутсвие среды Керра нами найдены аналитические решения уравнений (1.7), (1.9) и (1.11). Для модели, рассматриваемой в настоящей статье, решения указанных уравнений имеют чрезмерно громоздкий вид. Поэтому мы ограничимся численным решением указанных уравнений. Имея временные волновые функций системы (1.6), (1.8), (1.10) или (1.12), мы можем вычислить временную матрицу плотности полной системы "три кубита+мода поля". Для начальных состояний кубитов (1.2) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa83eGaaa@3A70@ (1.5) и фоковского состояния поля резонатора временную матрицу плотности полной системы можно записать как 

ρ A 1 A 2 A 3 F (t)=| χ A 1 A 2 A 3 F (t) χ A 1 A 2 A 3 F (t)|, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiaadgeadaWgaaqaaiaaigdaaeqaaiaayIW7caWGbbWaaSba aeaacaaIYaaabeaacaaMi8UaamyqamaaBaaabaGaaG4maaqabaGaaG jcVlaadAeaaeqaaOGaaGikaiaadshacaaIPaGaaGypaiaaiYhacqaH hpWydaWgaaWcbaGaamyqamaaBaaabaGaaGymaaqabaGaaGjcVlaadg eadaWgaaqaaiaaikdaaeqaaiaayIW7caWGbbWaaSbaaeaacaaIZaaa beaacaWGgbaabeaakiaaiIcacaWG0bGaaGykaiabgQYiXlabgMYiHl abeE8aJnaaBaaaleaacaWGbbWaaSbaaeaacaaIXaaabeaacaaMi8Ua amyqamaaBaaabaGaaGOmaaqabaGaaGjcVlaadgeadaWgaaqaaiaaio daaeqaaiaadAeaaeqaaOGaaGikaiaadshacaaIPaGaaGiFaiaaiYca aaa@65FC@ (1.13)

где | χ A 1 A 2 A 3 F (t) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiabeE 8aJnaaBaaaleaacaWGbbWaaSbaaeaacaaIXaaabeaacaaMi8Uaamyq amaaBaaabaGaaGOmaaqabaGaaGjcVlaadgeadaWgaaqaaiaaiodaae qaaiaadAeaaeqaaOGaaGikaiaadshacaaIPaGaeyOkJepaaa@45E4@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa83eGaaa@3A70@  временная волновая функция системы, которая совпадает для начальных состояний (1.2) MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa83eGaaa@3A70@ (1.4) с одной из функций (1.6), (1.8), (1.10) или (1.12) в зависимости от выбора числа начальных возбуждений системы N MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaaaa@36C6@ , а для начального состояния кубитов (1.5) представляет собой суперпозицию состояний (1.6), (1.8), (1.10) или (1.12), соответствующих разнице числа начальных возбуждений системы равным 3.

Мы можем также вычислить редуцированную матрицу плотности трех кубитов, усредняя выражения (1.13) по переменным поля

ρ A 1 A 2 A 3 (t)=S p F ρ A 1 A 2 A 3 F (t). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiaadgeadaWgaaqaaiaaigdaaeqaaiaayIW7caWGbbWaaSba aeaacaaIYaaabeaacaaMi8UaamyqamaaBaaabaGaaG4maaqabaaabe aakiaaiIcacaWG0bGaaGykaiaai2dacaWGtbGaamiCamaaBaaaleaa caWGgbaabeaakiabeg8aYnaaBaaaleaacaWGbbWaaSbaaeaacaaIXa aabeaacaaMi8UaamyqamaaBaaabaGaaGOmaaqabaGaaGjcVlaadgea daWgaaqaaiaaiodaaeqaaiaadAeaaeqaaOGaaGikaiaadshacaaIPa GaaGOlaaaa@53C9@ (1.14) 

Как уже отмечалось во введении, точные количественные меры перепутывания кубитов в настоящее время разработаны только для двухкубитных систем. В настоящей работе в качестве меры перепутывания выбран критерий Переса MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A71@  Хородецких или отрицательность [17 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa83eGaaa@3A70@ 18]. Для вычисления отрицательности пары кубитов необходимо вычислить редуцированную двухкубитную матрицу плотности. Для этого необходимо усреднить трехкубитную матрицу плотности (1.14) по переменным третьего кубита 

ρ A i A j (t)=S p A k ρ A 1 A 2 A 3 (t)(i,j,k=1,2,3ij,jk,ik). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiaadgeadaWgaaqaaiaadMgaaeqaaiaayIW7caWGbbWaaSba aeaacaWGQbaabeaaaeqaaOGaaGikaiaadshacaaIPaGaaGypaiaado facaWGWbWaaSbaaSqaaiaadgeadaWgaaqaaiaadUgaaeqaaaqabaGc cqaHbpGCdaWgaaWcbaGaamyqamaaBaaabaGaaGymaaqabaGaaGjcVl aadgeadaWgaaqaaiaaikdaaeqaaiaayIW7caWGbbWaaSbaaeaacaaI ZaaabeaaaeqaaOGaaGikaiaadshacaaIPaGaaGikaiaadMgacaaISa GaamOAaiaaiYcacaWGRbGaaGypaiaaigdacaaISaGaaGOmaiaaiYca caaIZaGaamyAaiabgcMi5kaadQgacaaISaGaamOAaiabgcMi5kaadU gacaaISaGaamyAaiabgcMi5kaadUgacaaIPaGaaGOlaaaa@679B@ (1.15) 

2. Вычисление отрицательности и обсуждение результатов 

Определим отрицательность для двух кубитов A i MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaWGPbaabeaaaaa@37D3@  и A j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaWGQbaabeaaaaa@37D4@  стандартным образом

ε ij =2 l μ l , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadMgacaWGQbaabeaakiaai2dacqGHsislcaaIYaWaaabu aeqaleaacaWGSbaabeqdcqGHris5aOGaeqiVd02aa0baaSqaaiaadY gaaeaacqGHsislaaGccaaISaaaaa@43BD@ (2.1)

где μ l MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd02aa0 baaSqaaiaadYgaaeaacqGHsislaaaaaa@39B4@   MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa83eGaaa@3A70@  отрицательные собственные значения частично транспонированной по переменным одного кубита редуцированной двухкубитной матрицы плотности. Для неперепутанных состояний ε=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaaG ypaiaaicdaaaa@391B@ . Для перепутанных состояний 0<ε1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiY dacqaH1oqzcqGHKjYOcaaIXaaaaa@3B8A@ . Максимальной степени перепутывания соответствует значение ε=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaaG ypaiaaigdaaaa@391C@ .

Для сепарабельного начального состояния кубитов (1.2), бисепарабельного состояния (1.3) и истинных перепутанных состояний (1.4), (1.5) двухкубитная редуцированная матрица плотности имеет вид

ρ A i A j (t)= ρ 11 0 0 0 0 ρ 22 ρ 23 0 0 ρ 23 * ρ 33 0 0 0 0 ρ 44 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiaadgeadaWgaaqaaiaadMgaaeqaaiaadgeadaWgaaqaaiaa dQgaaeqaaaqabaGccaaIOaGaamiDaiaaiMcacaaI9aWaaeWaaeaafa qabeabeaaaaaqaaiabeg8aYnaaBaaaleaacaaIXaGaaGymaaqabaaa keaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaeqyWdi 3aaSbaaSqaaiaaikdacaaIYaaabeaaaOqaaiabeg8aYnaaBaaaleaa caaIYaGaaG4maaqabaaakeaacaaIWaaabaGaaGimaaqaaiabeg8aYn aaDaaaleaacaaIYaGaaG4maaqaaiaaiQcaaaaakeaacqaHbpGCdaWg aaWcbaGaaG4maiaaiodaaeqaaaGcbaGaaGimaaqaaiaaicdaaeaaca aIWaaabaGaaGimaaqaaiabeg8aYnaaBaaaleaacaaI0aGaaGinaaqa baaaaaGccaGLOaGaayzkaaGaaGOlaaaa@5DAD@ (2.2)

Матричные элементы (2.2) кубитов A 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaaIXaaabeaaaaa@37A0@  и A 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaaIYaaabeaaaaa@37A1@  в случае начального состояния кубитов (1.2) и числа фотонов в моде n=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaai2 dacaaIXaaaaa@3868@  имеют вид

ρ 11 (t)=| x 1 (t )| 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiaaigdacaaIXaaabeaakiaaiIcacaWG0bGaaGykaiaai2da caaI8bGaamiEamaaBaaaleaacaaIXaaabeaakiaaiIcacaWG0bGaaG ykaiaaiYhadaahaaWcbeqaaiaaikdaaaGccaaISaGaaGzbVdaa@4613@

ρ 22 (t)=| x 2 (t )| 2 +| x 4 (t )| 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiaaikdacaaIYaaabeaakiaaiIcacaWG0bGaaGykaiaai2da caaI8bGaamiEamaaBaaaleaacaaIYaaabeaakiaaiIcacaWG0bGaaG ykaiaaiYhadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI8bGaamiE amaaBaaaleaacaaI0aaabeaakiaaiIcacaWG0bGaaGykaiaaiYhada ahaaWcbeqaaiaaikdaaaGccaaISaGaaGzbVdaa@4E46@

ρ 33 (t)=| x 3 (t )| 2 +| x 5 (t )| 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiaaiodacaaIZaaabeaakiaaiIcacaWG0bGaaGykaiaai2da caaI8bGaamiEamaaBaaaleaacaaIZaaabeaakiaaiIcacaWG0bGaaG ykaiaaiYhadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI8bGaamiE amaaBaaaleaacaaI1aaabeaakiaaiIcacaWG0bGaaGykaiaaiYhada ahaaWcbeqaaiaaikdaaaGccaaISaGaaGzbVdaa@4E4A@

ρ 44 (t)=| x 6 (t )| 2 +| x 7 (t )| 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiaaisdacaaI0aaabeaakiaaiIcacaWG0bGaaGykaiaai2da caaI8bGaamiEamaaBaaaleaacaaI2aaabeaakiaaiIcacaWG0bGaaG ykaiaaiYhadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI8bGaamiE amaaBaaaleaacaaI3aaabeaakiaaiIcacaWG0bGaaGykaiaaiYhada ahaaWcbeqaaiaaikdaaaGccaaISaGaaGzbVdaa@4E51@

ρ 23 (t)= x 4 (t) x 5 * (t)+ x 2 (t) x 3 * (t), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiaaikdacaaIZaaabeaakiaaiIcacaWG0bGaaGykaiaai2da caWG4bWaaSbaaSqaaiaaisdaaeqaaOGaaGikaiaadshacaaIPaGaam iEamaaDaaaleaacaaI1aaabaGaaGOkaaaakiaaiIcacaWG0bGaaGyk aiabgUcaRiaadIhadaWgaaWcbaGaaGOmaaqabaGccaaIOaGaamiDai aaiMcacaWG4bWaa0baaSqaaiaaiodaaeaacaaIQaaaaOGaaGikaiaa dshacaaIPaGaaGilaiaaywW7aaa@5251@

ρ 32 (t)=( ρ 23 (t )) * . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiaaiodacaaIYaaabeaakiaaiIcacaWG0bGaaGykaiaai2da caaIOaGaeqyWdi3aaSbaaSqaaiaaikdacaaIZaaabeaakiaaiIcaca WG0bGaaGykaiaaiMcadaahaaWcbeqaaiaaiQcaaaGccaaIUaGaaGzb Vdaa@46EA@

Для того же начального состояния и кубитов A 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaaIYaaabeaaaaa@37A1@  и A 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaaIZaaabeaaaaa@37A2@  матричные элементы принимают вид 

ρ 11 (t)=| x 3 (t )| 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiaaigdacaaIXaaabeaakiaaiIcacaWG0bGaaGykaiaai2da caaI8bGaamiEamaaBaaaleaacaaIZaaabeaakiaaiIcacaWG0bGaaG ykaiaaiYhadaahaaWcbeqaaiaaikdaaaGccaaISaGaaGzbVdaa@4615@

ρ 22 (t)=| x 1 (t )| 2 +| x 5 (t )| 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiaaikdacaaIYaaabeaakiaaiIcacaWG0bGaaGykaiaai2da caaI8bGaamiEamaaBaaaleaacaaIXaaabeaakiaaiIcacaWG0bGaaG ykaiaaiYhadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI8bGaamiE amaaBaaaleaacaaI1aaabeaakiaaiIcacaWG0bGaaGykaiaaiYhada ahaaWcbeqaaiaaikdaaaGccaaISaGaaGzbVdaa@4E46@

ρ 33 (t)=| x 2 (t )| 2 +| x 6 (t )| 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiaaiodacaaIZaaabeaakiaaiIcacaWG0bGaaGykaiaai2da caaI8bGaamiEamaaBaaaleaacaaIYaaabeaakiaaiIcacaWG0bGaaG ykaiaaiYhadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI8bGaamiE amaaBaaaleaacaaI2aaabeaakiaaiIcacaWG0bGaaGykaiaaiYhada ahaaWcbeqaaiaaikdaaaGccaaISaGaaGzbVdaa@4E4A@

ρ 44 (t)=| x 4 (t )| 2 +| x 7 (t )| 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiaaisdacaaI0aaabeaakiaaiIcacaWG0bGaaGykaiaai2da caaI8bGaamiEamaaBaaaleaacaaI0aaabeaakiaaiIcacaWG0bGaaG ykaiaaiYhadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI8bGaamiE amaaBaaaleaacaaI3aaabeaakiaaiIcacaWG0bGaaGykaiaaiYhada ahaaWcbeqaaiaaikdaaaGccaaISaGaaGzbVdaa@4E4F@

ρ 23 (t)= x 1 (t) x 2 * (t)+ x 5 (t) x 6 * (t), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiaaikdacaaIZaaabeaakiaaiIcacaWG0bGaaGykaiaai2da caWG4bWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadshacaaIPaGaam iEamaaDaaaleaacaaIYaaabaGaaGOkaaaakiaaiIcacaWG0bGaaGyk aiabgUcaRiaadIhadaWgaaWcbaGaaGynaaqabaGccaaIOaGaamiDai aaiMcacaWG4bWaa0baaSqaaiaaiAdaaeaacaaIQaaaaOGaaGikaiaa dshacaaIPaGaaGilaiaaywW7aaa@5251@

ρ 32 (t)=( ρ 23 (t )) * . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiaaiodacaaIYaaabeaakiaaiIcacaWG0bGaaGykaiaai2da caaIOaGaeqyWdi3aaSbaaSqaaiaaikdacaaIZaaabeaakiaaiIcaca WG0bGaaGykaiaaiMcadaahaaWcbeqaaiaaiQcaaaGccaaIUaGaaGzb Vdaa@46EA@

Явные выражения для матричных элементов в (2.2) кубитов A 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaaIXaaabeaaaaa@37A0@  и A 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaaIYaaabeaaaaa@37A1@  в случае начальных состояний кубитов (1.3), (1.4) и числа фотонов n=2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaai2 dacaaIYaaaaa@3869@ , а также начального состояния кубитов (1.5) и числа фотонов n=3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaai2 dacaaIZaaaaa@386A@  имеют вид: 

ρ 11 (t)=| B 1 (t )| 2 +| B 2 (t )| 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiaaigdacaaIXaaabeaakiaaiIcacaWG0bGaaGykaiaai2da caaI8bGaamOqamaaBaaaleaacaaIXaaabeaakiaaiIcacaWG0bGaaG ykaiaaiYhadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI8bGaamOq amaaBaaaleaacaaIYaaabeaakiaaiIcacaWG0bGaaGykaiaaiYhada ahaaWcbeqaaiaaikdaaaGccaaISaGaaGzbVdaa@4DD5@

ρ 22 (t)=| B 3 (t )| 2 +| B 5 (t )| 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiaaikdacaaIYaaabeaakiaaiIcacaWG0bGaaGykaiaai2da caaI8bGaamOqamaaBaaaleaacaaIZaaabeaakiaaiIcacaWG0bGaaG ykaiaaiYhadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI8bGaamOq amaaBaaaleaacaaI1aaabeaakiaaiIcacaWG0bGaaGykaiaaiYhada ahaaWcbeqaaiaaikdaaaGccaaISaGaaGzbVdaa@4DDC@

ρ 33 (t)=| B 4 (t )| 2 +| B 6 (t )| 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiaaiodacaaIZaaabeaakiaaiIcacaWG0bGaaGykaiaai2da caaI8bGaamOqamaaBaaaleaacaaI0aaabeaakiaaiIcacaWG0bGaaG ykaiaaiYhadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI8bGaamOq amaaBaaaleaacaaI2aaabeaakiaaiIcacaWG0bGaaGykaiaaiYhada ahaaWcbeqaaiaaikdaaaGccaaISaGaaGzbVdaa@4DE0@

ρ 44 (t)=| B 7 (t )| 2 +| B 8 (t )| 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiaaisdacaaI0aaabeaakiaaiIcacaWG0bGaaGykaiaai2da caaI8bGaamOqamaaBaaaleaacaaI3aaabeaakiaaiIcacaWG0bGaaG ykaiaaiYhadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI8bGaamOq amaaBaaaleaacaaI4aaabeaakiaaiIcacaWG0bGaaGykaiaaiYhada ahaaWcbeqaaiaaikdaaaGccaaISaGaaGzbVdaa@4DE7@

ρ 23 (t)= B 3 (t) B 4 * (t)+ B 5 (t) B 6 * (t), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiaaikdacaaIZaaabeaakiaaiIcacaWG0bGaaGykaiaai2da caWGcbWaaSbaaSqaaiaaiodaaeqaaOGaaGikaiaadshacaaIPaGaam OqamaaDaaaleaacaaI0aaabaGaaGOkaaaakiaaiIcacaWG0bGaaGyk aiabgUcaRiaadkeadaWgaaWcbaGaaGynaaqabaGccaaIOaGaamiDai aaiMcacaWGcbWaa0baaSqaaiaaiAdaaeaacaaIQaaaaOGaaGikaiaa dshacaaIPaGaaGilaiaaywW7aaa@517D@

ρ 32 (t)=( ρ 23 (t )) * . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiaaiodacaaIYaaabeaakiaaiIcacaWG0bGaaGykaiaai2da caaIOaGaeqyWdi3aaSbaaSqaaiaaikdacaaIZaaabeaakiaaiIcaca WG0bGaaGykaiaaiMcadaahaaWcbeqaaiaaiQcaaaGccaaIUaGaaGzb Vdaa@46EA@  

Явный вид матричных элементов для тех же начальных состояний, но для кубитов A 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaaIYaaabeaaaaa@37A1@  и A 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaaIZaaabeaaaaa@37A2@ : 

ρ 11 (t)=| B 1 (t )| 2 +| B 4 (t )| 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiaaigdacaaIXaaabeaakiaaiIcacaWG0bGaaGykaiaai2da caaI8bGaamOqamaaBaaaleaacaaIXaaabeaakiaaiIcacaWG0bGaaG ykaiaaiYhadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI8bGaamOq amaaBaaaleaacaaI0aaabeaakiaaiIcacaWG0bGaaGykaiaaiYhada ahaaWcbeqaaiaaikdaaaGccaaISaGaaGzbVdaa@4DD7@

ρ 22 (t)=| B 2 (t )| 2 +| B 6 (t )| 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiaaikdacaaIYaaabeaakiaaiIcacaWG0bGaaGykaiaai2da caaI8bGaamOqamaaBaaaleaacaaIYaaabeaakiaaiIcacaWG0bGaaG ykaiaaiYhadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI8bGaamOq amaaBaaaleaacaaI2aaabeaakiaaiIcacaWG0bGaaGykaiaaiYhada ahaaWcbeqaaiaaikdaaaGccaaISaGaaGzbVdaa@4DDC@

ρ 33 (t)=| B 3 (t )| 2 +| B 7 (t )| 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiaaiodacaaIZaaabeaakiaaiIcacaWG0bGaaGykaiaai2da caaI8bGaamOqamaaBaaaleaacaaIZaaabeaakiaaiIcacaWG0bGaaG ykaiaaiYhadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI8bGaamOq amaaBaaaleaacaaI3aaabeaakiaaiIcacaWG0bGaaGykaiaaiYhada ahaaWcbeqaaiaaikdaaaGccaaISaGaaGzbVdaa@4DE0@

ρ 44 (t)=| B 5 (t )| 2 +| B 8 (t )| 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiaaisdacaaI0aaabeaakiaaiIcacaWG0bGaaGykaiaai2da caaI8bGaamOqamaaBaaaleaacaaI1aaabeaakiaaiIcacaWG0bGaaG ykaiaaiYhadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI8bGaamOq amaaBaaaleaacaaI4aaabeaakiaaiIcacaWG0bGaaGykaiaaiYhada ahaaWcbeqaaiaaikdaaaGccaaISaGaaGzbVdaa@4DE5@

ρ 23 (t)= B 2 (t) B 3 * (t)+ B 6 (t) B 7 * (t), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiaaikdacaaIZaaabeaakiaaiIcacaWG0bGaaGykaiaai2da caWGcbWaaSbaaSqaaiaaikdaaeqaaOGaaGikaiaadshacaaIPaGaam OqamaaDaaaleaacaaIZaaabaGaaGOkaaaakiaaiIcacaWG0bGaaGyk aiabgUcaRiaadkeadaWgaaWcbaGaaGOnaaqabaGccaaIOaGaamiDai aaiMcacaWGcbWaa0baaSqaaiaaiEdaaeaacaaIQaaaaOGaaGikaiaa dshacaaIPaGaaGilaiaaywW7aaa@517D@

ρ 32 (t)=( ρ 23 (t )) * . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiaaiodacaaIYaaabeaakiaaiIcacaWG0bGaaGykaiaai2da caaIOaGaeqyWdi3aaSbaaSqaaiaaikdacaaIZaaabeaakiaaiIcaca WG0bGaaGykaiaaiMcadaahaaWcbeqaaiaaiQcaaaGccaaIUaGaaGzb Vdaa@46EA@  

Частично транспонированная по переменным одного кубита редуцированная матрица плотности кубитов для (2.2) может быть представлена в виде 

ρ A i A j T 1 (t)= ρ 11 0 0 ρ 23 * 0 ρ 22 0 0 0 0 ρ 33 0 ρ 23 0 0 ρ 44 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aa0 baaSqaaiaadgeadaWgaaqaaiaadMgaaeqaaiaadgeadaWgaaqaaiaa dQgaaeqaaaqaaiaadsfadaWgaaqaaiaaigdaaeqaaaaakiaaiIcaca WG0bGaaGykaiaai2dadaqadaqaauaabeqaeqaaaaaabaGaeqyWdi3a aSbaaSqaaiaaigdacaaIXaaabeaaaOqaaiaaicdaaeaacaaIWaaaba GaeqyWdi3aa0baaSqaaiaaikdacaaIZaaabaGaaGOkaaaaaOqaaiaa icdaaeaacqaHbpGCdaWgaaWcbaGaaGOmaiaaikdaaeqaaaGcbaGaaG imaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiabeg8aYnaaBaaa leaacaaIZaGaaG4maaqabaaakeaacaaIWaaabaGaeqyWdi3aaSbaaS qaaiaaikdacaaIZaaabeaaaOqaaiaaicdaaeaacaaIWaaabaGaeqyW di3aaSbaaSqaaiaaisdacaaI0aaabeaaaaaakiaawIcacaGLPaaaca aIUaaaaa@5F63@ (2.3)

Матрица (2.3) имеет всего одно собственное значение, которое может быть отрицательным. В результате отрицательность (2.1) может быть записана как

ε ij = ( ρ 44 ρ 11 ) 2 +4 ρ 23 2 ρ 11 ρ 44 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadMgacaWGQbaabeaakiaai2dadaGcaaqaaiaaiIcacqaH bpGCdaWgaaWcbaGaaGinaiaaisdaaeqaaOGaeyOeI0IaeqyWdi3aaS baaSqaaiaaigdacaaIXaaabeaakiaaiMcadaahaaWcbeqaaiaaikda aaGccqGHRaWkcaaI0aGaeyyXICTaeqyWdi3aa0baaSqaaiaaikdaca aIZaaabaGaaGOmaaaaaeqaaOGaeyOeI0IaeqyWdi3aaSbaaSqaaiaa igdacaaIXaaabeaakiabgkHiTiabeg8aYnaaBaaaleaacaaI0aGaaG inaaqabaGccaaIUaaaaa@562D@ (2.4) 

Результаты компьютерного моделирования временной зависимости отрицательности ε 12 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaaigdacaaIYaaabeaaaaa@393D@  для кубитов 1 и 2 от приведенного времени γt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaam iDaaaa@3893@  для начального сепарабельного состояния кубитов |+,, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiabgU caRiaaiYcacqGHsislcaaISaGaeyOeI0IaeyOkJepaaa@3CEB@ , и различных значений параметра расстройки и керровской нелинейности представлены на рис. 2.1. Начальное число фотонов в моде выбрано равным n=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaai2 dacaaIXaaaaa@3868@ . Из рисунка хорошо видно, что учет расстройки и керровской нелинейности приводит к существенному увеличению максимальной степени перепутывания кубитов 1 и 2. Заметим также, что в отличие от случая теплового поля резонатора [67] для фоковского начального состояния поля для кубитов 1 и 2 отсутствует эффект мгновенной смерти перепутывания.

 

Рис. 2.1. Зависимость отрицательностей ε 12 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaaigdacaaIYaaabeaaaaa@393D@  ( a) от приведенного времени γt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaam iDaaaa@3893@  для начального состояния кубитов |+,, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiabgU caRiaaiYcacqGHsislcaaISaGaeyOeI0IaeyOkJepaaa@3CEB@ . Число фотонов в моде резонатора выбрано равным n=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaai2 dacaaIXaaaaa@3868@ . Значения параметров расстройки керровской нелинейности в случае а): Δ=0.01γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ypaiaaicdacaaIUaGaaGimaiaaigdacqaHZoWzaaa@3CAE@ , Ξ=0.01γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdGLaaG ypaiaaicdacaaIUaGaaGimaiaaigdacqaHZoWzaaa@3CCC@  (сплошная линия); Δ=2.5γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ypaiaaikdacaaIUaGaaGynaiabeo7aNbaa@3BFA@ , Ξ=0.01γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdGLaaG ypaiaaicdacaaIUaGaaGimaiaaigdacqaHZoWzaaa@3CCC@  (штриховая линия) и Δ=9.5γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ypaiaaiMdacaaIUaGaaGynaiabeo7aNbaa@3C01@ , Ξ=0.01γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdGLaaG ypaiaaicdacaaIUaGaaGimaiaaigdacqaHZoWzaaa@3CCC@  (пунктирная линия). В случае б): Δ=0.01γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ypaiaaicdacaaIUaGaaGimaiaaigdacqaHZoWzaaa@3CAE@ , Ξ=0.01γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdGLaaG ypaiaaicdacaaIUaGaaGimaiaaigdacqaHZoWzaaa@3CCC@  (сплошная линия) и Δ=0.01γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ypaiaaicdacaaIUaGaaGimaiaaigdacqaHZoWzaaa@3CAE@ , Ξ=γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdGLaaG ypaiabeo7aNbaa@39E5@  (пунктирная линия)

Fig. 2.1. Dependence of the negatives ε 12 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaaigdacaaIYaaabeaaaaa@393D@  ( a) on the reduced time γt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaam iDaaaa@3893@  for the initial state of qubits |+,, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiabgU caRiaaiYcacqGHsislcaaISaGaeyOeI0IaeyOkJepaaa@3CEB@ . The number of photons in the resonator mode is chosen to be n=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaai2 dacaaIXaaaaa@3868@ . Values of Kerr nonlinearity detuning parameters in case a): Δ=0.01γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ypaiaaicdacaaIUaGaaGimaiaaigdacqaHZoWzaaa@3CAE@ , Ξ=0.01γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdGLaaG ypaiaaicdacaaIUaGaaGimaiaaigdacqaHZoWzaaa@3CCC@  (solid line); Δ=2.5γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ypaiaaikdacaaIUaGaaGynaiabeo7aNbaa@3BFA@ , Ξ=0.01γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdGLaaG ypaiaaicdacaaIUaGaaGimaiaaigdacqaHZoWzaaa@3CCC@  (dashed line) and Δ=9.5γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ypaiaaiMdacaaIUaGaaGynaiabeo7aNbaa@3C01@ , Ξ=0.01γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdGLaaG ypaiaaicdacaaIUaGaaGimaiaaigdacqaHZoWzaaa@3CCC@  (dotted line). In case b): Δ=0.01γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ypaiaaicdacaaIUaGaaGimaiaaigdacqaHZoWzaaa@3CAE@ , Ξ=0.01γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdGLaaG ypaiaaicdacaaIUaGaaGimaiaaigdacqaHZoWzaaa@3CCC@  (solid line) and Δ=0.01γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ypaiaaicdacaaIUaGaaGimaiaaigdacqaHZoWzaaa@3CAE@ , Ξ=γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdGLaaG ypaiabeo7aNbaa@39E5@  (dotted line)

 

На рис. 2.2 показаны аналогичные зависимости отрицательности ε 23 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaaikdacaaIZaaabeaaaaa@393F@  для кубитов 2 и 3. В рассматриваемом случае увеличение максимальной степени перепутывания кубитов 2 и 3 возможно только при включении расстройки. Керровская нелинейность слабо влияет на максимальную степень перепутывания кубитов 2 и 3. В резонансном случае и в отсутствие керровской нелинейности для кубитов 2 и 3 так же, как и в случае теплового поля, имеет место эффект мгновенной смерти перепутывания. При этом подавлению эффекта способствует только наличие расстройки. Зависимость отрицательности ε 12 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaaigdacaaIYaaabeaaaaa@393D@  для кубитов 1 и 2 от приведенного времени γt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaam iDaaaa@3893@  для начального бисепарабельного состояния кубитов (1/ 2 )(|+,+,+|+,,+ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaaig dacaaIVaWaaOaaaeaacaaIYaaaleqaaOGaaGykaiaaiIcacaaI8bGa ey4kaSIaaGilaiabgUcaRiaaiYcacqGHsislcqGHQms8cqGHRaWkca aI8bGaey4kaSIaaGilaiabgkHiTiaaiYcacqGHRaWkcqGHQms8aaa@491B@  и различных значений параметра расстройки и керровской нелинейности представлена на рис. 2.3. Начальное число фотонов в моде выбрано равным n=2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaai2 dacaaIYaaaaa@3869@ . Для рассматриваемого случая кубиты 1 и 2 в начальный момент времени не перепутаны. В отсутствие расстройки и керровской нелинейности имеет место эффект мгновенной смерти перепутывания. Включение расстройки приводит к существенному увеличению максимальной степени перепутывания кубитов 1 и 2 и исчезновению мгновенной смерти перепутывания. Включение керровской нелинейности, напротив, приводит к исчезновению перепутывания кубитов, индуцированного полем резонатора. На рис. 2.4 показаны аналогичные зависимости отрицательности ε 23 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaaikdacaaIZaaabeaaaaa@393F@  для кубитов 2 и 3. В рассматриваемом случае кубиты 2 и 3 в начальный момент времени находятся в максимально перепутанном состоянии ( ε 23 (0)=1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaaikdacaaIZaaabeaakiaaiIcacaaIWaGaaGykaiaai2da caaIXaGaaGykaaaa@3D9D@ . Для резонансного случая и в отсутствие керровской нелинйности взаимодействие кубитов с полем резонатора приводит к осцилляциям Раби и к периодической смерти и рождению перепутывания их состояний. Включение расстройки и керровской нелинейности приводит к уменьшению амплитуд осцилляций параметра перепутывания кубитов 2 и 3 и стабилизации их начальной перепутанности. Зависимость отрицательности ε 23 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaaikdacaaIZaaabeaaaaa@393F@  (или ε 12 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaaigdacaaIYaaabeaaaaa@393D@  ) для кубитов 2 и 3 (для кубитов 1 и 2) от приведенного времени γt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaam iDaaaa@3893@  для начального истинного перепутанного состояния кубитов W MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaaaa@36CF@  - типа (1/ 3 )(|+,+,+|+,,++|,+,+,2) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaaig dacaaIVaWaaOaaaeaacaaIZaaaleqaaOGaaGykaiaaiIcacaaI8bGa ey4kaSIaaGilaiabgUcaRiaaiYcacqGHsislcqGHQms8cqGHRaWkca aI8bGaey4kaSIaaGilaiabgkHiTiaaiYcacqGHRaWkcqGHQms8cqGH RaWkcaaI8bGaeyOeI0IaaGilaiabgUcaRiaaiYcacqGHRaWkcaaISa GaaGOmaiabgQYiXlaaiMcaaaa@5310@  и различных значений параметра расстройки и керровской нелинейности представлена на рис. 2.5. Начальное число фотонов в моде выбрано равным n=2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaai2 dacaaIYaaaaa@3869@ . Для рассматриваемого начального состояния кубитов поведение отрицательности любой пары кубитов аналогично поведению ε 23 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaaikdacaaIZaaabeaaaaa@393F@ , представленному на предыдущем рисунке. Единственное отличие заключается в том, что максимально возможное значение отрицательности любой пары кубитов равно ε ij (0)=(1/3)( 5 1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaadMgacaWGQbaabeaakiaaiIcacaaIWaGaaGykaiaai2da caaIOaGaaGymaiaai+cacaaIZaGaaGykaiaaiIcadaGcaaqaaiaaiw daaSqabaGccqGHsislcaaIXaGaaGykaaaa@441A@ . Наконец, зависимость отрицательности ε 23 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaaikdacaaIZaaabeaaaaa@393F@  (или ε 12 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaaigdacaaIYaaabeaaaaa@393D@  ) для кубитов 2 и 3 (для кубитов 1 и 2) от приведенного времени γt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaam iDaaaa@3893@  для начального истинного перепутанного состояния кубитов GHZ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raiaadI eacaWGAbaaaa@386B@  - типа (1/ 2 )(|+,+,++|,,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaaig dacaaIVaWaaOaaaeaacaaIYaaaleqaaOGaaGykaiaaiIcacaaI8bGa ey4kaSIaaGilaiabgUcaRiaaiYcacqGHRaWkcqGHQms8cqGHRaWkca aI8bGaeyOeI0IaaGilaiabgkHiTiaaiYcacqGHsislcqGHQms8caaI Paaaaa@49D9@  и различных значений параметра расстройки представлена на рис. 2.6. Начальное число фотонов в моде выбрано равным n=3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaai2 dacaaIZaaaaa@386A@ . В рассматриваемом случае в начальный момент времени все пары кубитов неперепутаны. Для резонансной модели в отсутствие керровской нелинейности взаимодействие кубитов с полем резонатора не индуцирует их перепутывание в процессе эволюции. Включение расстройки приводит к возникновению перепутывания пар кубитов, однако зависимость максимальной степени их перепутывания от расстройки достаточно слабая. При этом для любых расстроек имеет место эффект мгновенной смерти перепутывания. Учет керровской нелинейности в случае резонасного взаимодействия кубитов с полем резонатора не приводит к возникновению их перепутывания.

 

Рис. 2.2. Зависимость отрицательностей ε 23 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaaikdacaaIZaaabeaaaaa@393F@  ( a) от приведенного времени γt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaam iDaaaa@3893@  для начального состояния кубитов |+,, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiabgU caRiaaiYcacqGHsislcaaISaGaeyOeI0IaeyOkJepaaa@3CEB@ . Число фотонов в моде резонатора выбрано равным n=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaai2 dacaaIXaaaaa@3868@ . Значения параметров расстройки керровской нелинейности в случае а): Δ=0.01γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ypaiaaicdacaaIUaGaaGimaiaaigdacqaHZoWzaaa@3CAE@ , Ξ=0.01γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdGLaaG ypaiaaicdacaaIUaGaaGimaiaaigdacqaHZoWzaaa@3CCC@  (сплошная линия); Δ=2.5γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ypaiaaikdacaaIUaGaaGynaiabeo7aNbaa@3BFA@ , Ξ=0.01γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdGLaaG ypaiaaicdacaaIUaGaaGimaiaaigdacqaHZoWzaaa@3CCC@  (штриховая линия) и Δ=9.5γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ypaiaaiMdacaaIUaGaaGynaiabeo7aNbaa@3C01@ , Ξ=0.01γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdGLaaG ypaiaaicdacaaIUaGaaGimaiaaigdacqaHZoWzaaa@3CCC@  (пунктирная линия). В случае б): Δ=0.01γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ypaiaaicdacaaIUaGaaGimaiaaigdacqaHZoWzaaa@3CAE@ , Ξ=0.01γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdGLaaG ypaiaaicdacaaIUaGaaGimaiaaigdacqaHZoWzaaa@3CCC@  (сплошная линия) и Δ=0.01γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ypaiaaicdacaaIUaGaaGimaiaaigdacqaHZoWzaaa@3CAE@ , Ξ=γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdGLaaG ypaiabeo7aNbaa@39E5@  (пунктирная линия)

Fig. 2.2. Dependence of the negatives ε 23 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaaikdacaaIZaaabeaaaaa@393F@  ( a) on the reduced time γt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaam iDaaaa@3893@  for the initial state of qubits |+,, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiabgU caRiaaiYcacqGHsislcaaISaGaeyOeI0IaeyOkJepaaa@3CEB@ . The number of photons in the resonator mode is chosen to be n=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaai2 dacaaIXaaaaa@3868@ . Values of Kerr nonlinearity detuning parameters in case a): Δ=0.01γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ypaiaaicdacaaIUaGaaGimaiaaigdacqaHZoWzaaa@3CAE@ , Ξ=0.01γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdGLaaG ypaiaaicdacaaIUaGaaGimaiaaigdacqaHZoWzaaa@3CCC@  (solid line); Δ=2.5γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ypaiaaikdacaaIUaGaaGynaiabeo7aNbaa@3BFA@ , Ξ=0.01γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdGLaaG ypaiaaicdacaaIUaGaaGimaiaaigdacqaHZoWzaaa@3CCC@  (dashed line) and Δ=9.5γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ypaiaaiMdacaaIUaGaaGynaiabeo7aNbaa@3C01@ , Ξ=0.01γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdGLaaG ypaiaaicdacaaIUaGaaGimaiaaigdacqaHZoWzaaa@3CCC@  (dotted line). In case b): Δ=0.01γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ypaiaaicdacaaIUaGaaGimaiaaigdacqaHZoWzaaa@3CAE@ , Ξ=0.01γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdGLaaG ypaiaaicdacaaIUaGaaGimaiaaigdacqaHZoWzaaa@3CCC@  (solid line) and Δ=0.01γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ypaiaaicdacaaIUaGaaGimaiaaigdacqaHZoWzaaa@3CAE@ , Ξ=γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdGLaaG ypaiabeo7aNbaa@39E5@  (dotted line)

 

Рис. 2.3. Зависимость отрицательностей ε 12 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaaigdacaaIYaaabeaaaaa@393D@  ( a) от приведенного времени γt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaam iDaaaa@3893@ для начального состояния кубитов (1/2)+,+,++,,+. Число фотонов в моде резонатора выбрано равным n=2. Значения параметров расстройки керровской нелинейности в случае а): Δ=0.01γ, Ξ=0.01γ (сплошная линия); Δ=5γ, Ξ=0.01γ (штриховая линия) и Δ=13γ, Ξ=0.01γ (пунктирная линия). В случае б): Δ=0.01γ, Ξ=0.01γ (сплошная линия) и Δ=0.01γ, Ξ=γ (пунктирная линия)

Fig. 2.3. Dependence of the negatives ε 12 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaaigdacaaIYaaabeaaaaa@393D@  ( a) on the reduced time γt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaam iDaaaa@3893@  for the initial state of qubits (1/2)+,+,++,,+. The number of photons in the resonator mode is chosen equal to n=2. The values of the parameters of the Kerr nonlinearity detuning in the case of a): Δ=0.01γ, Ξ=0.01γ (solid line); Δ=5γ, Ξ=0.01γ (dashed line) and Δ=13γ, Ξ=0.01γ (dotted line). In case b): Δ=0.01γ, Ξ=0.01γ (solid line) and Δ=0.01γ, Ξ=γ (dotted line)

 

Рис. 2.4. Зависимость отрицательностей ε 23 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaaikdacaaIZaaabeaaaaa@393F@  для начального состояния кубитов (1/ 2 )(|+,+,,2+|+,,+) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaaig dacaaIVaWaaOaaaeaacaaIYaaaleqaaOGaaGykaiaaiIcacaaI8bGa ey4kaSIaaGilaiabgUcaRiaaiYcacqGHsislcaaISaGaaGOmaiabgQ YiXlabgUcaRiaaiYhacqGHRaWkcaaISaGaeyOeI0IaaGilaiabgUca RiabgQYiXlaaiMcaaaa@4B40@  при θ= π 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUdeNaaG ypamaalaaabaGaeqiWdahabaGaaGinaaaaaaa@3AFB@ . Число фотонов в моде резонатора выбрано равным n=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaai2 dacaaIXaaaaa@3868@ . Значения параметров расстройки керровской нелинейности в случае а): Δ=0.01γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ypaiaaicdacaaIUaGaaGimaiaaigdacqaHZoWzaaa@3CAE@ , Ξ=0.01γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdGLaaG ypaiaaicdacaaIUaGaaGimaiaaigdacqaHZoWzaaa@3CCC@  (сплошная линия); Δ=5γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ypaiaaiwdacqaHZoWzaaa@3A86@ , Ξ=0.01γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdGLaaG ypaiaaicdacaaIUaGaaGimaiaaigdacqaHZoWzaaa@3CCC@  (штриховая линия) и Δ=13γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ypaiaaigdacaaIZaGaeq4SdCgaaa@3B3F@ , Ξ=0.01γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdGLaaG ypaiaaicdacaaIUaGaaGimaiaaigdacqaHZoWzaaa@3CCC@  (пунктирная линия). В случае б): Δ=0.01γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ypaiaaicdacaaIUaGaaGimaiaaigdacqaHZoWzaaa@3CAE@ , Ξ=0.01γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdGLaaG ypaiaaicdacaaIUaGaaGimaiaaigdacqaHZoWzaaa@3CCC@  (сплошная линияи Δ=0.01γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ypaiaaicdacaaIUaGaaGimaiaaigdacqaHZoWzaaa@3CAE@ , Ξ=2.5γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdGLaaG ypaiaaikdacaaIUaGaaGynaiabeo7aNbaa@3C18@ (пунктирная линия) 

Fig. 2.4. Dependence of negatives ε 23 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaaikdacaaIZaaabeaaaaa@393F@  for the initial state of qubits (1/ 2 )(|+,+,,2rangle+|+,,+) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaaig dacaaIVaWaaOaaaeaacaaIYaaaleqaaOGaaGykaiaaiIcacaaI8bGa ey4kaSIaaGilaiabgUcaRiaaiYcacqGHsislcaaISaGaaGOmaiaays W7caWGYbGaamyyaiaad6gacaWGNbGaamiBaiaadwgacqGHRaWkcaaI 8bGaey4kaSIaaGilaiabgkHiTiaaiYcacqGHRaWkcqGHQms8caaIPa aaaa@509A@  when θ= π 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUdeNaaG ypamaalaaabaGaeqiWdahabaGaaGinaaaaaaa@3AFB@ . The number of photons in the resonator mode is chosen to be n=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaai2 dacaaIXaaaaa@3868@ . Values of Kerr nonlinearity detuning parameters in case a): Δ=0.01γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ypaiaaicdacaaIUaGaaGimaiaaigdacqaHZoWzaaa@3CAE@ , Ξ=0.01γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdGLaaG ypaiaaicdacaaIUaGaaGimaiaaigdacqaHZoWzaaa@3CCC@  (solid line); Δ=5γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ypaiaaiwdacqaHZoWzaaa@3A86@ , Ξ=0.01γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdGLaaG ypaiaaicdacaaIUaGaaGimaiaaigdacqaHZoWzaaa@3CCC@  (dashed line) and Δ=13γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ypaiaaigdacaaIZaGaeq4SdCgaaa@3B3F@ , Ξ=0.01γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdGLaaG ypaiaaicdacaaIUaGaaGimaiaaigdacqaHZoWzaaa@3CCC@  (dotted line). In case b): Δ=0.01γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ypaiaaicdacaaIUaGaaGimaiaaigdacqaHZoWzaaa@3CAE@ , Ξ=0.01γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdGLaaG ypaiaaicdacaaIUaGaaGimaiaaigdacqaHZoWzaaa@3CCC@  (solid line) and Δ=0.01γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ypaiaaicdacaaIUaGaaGimaiaaigdacqaHZoWzaaa@3CAE@ , Ξ=2.5γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdGLaaG ypaiaaikdacaaIUaGaaGynaiabeo7aNbaa@3C18@  (dotted line)

 

Рис. 2.5. Зависимость отрицательностей ε 23 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaaikdacaaIZaaabeaaaaa@393F@  ( a) от приведенного времени γt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaam iDaaaa@3893@  для начального состояния кубитов (1/ 3 )(|+,+,+|+,,++|,+,+) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaaig dacaaIVaWaaOaaaeaacaaIZaaaleqaaOGaaGykaiaaiIcacaaI8bGa ey4kaSIaaGilaiabgUcaRiaaiYcacqGHsislcqGHQms8cqGHRaWkca aI8bGaey4kaSIaaGilaiabgkHiTiaaiYcacqGHRaWkcqGHQms8cqGH RaWkcaaI8bGaeyOeI0IaaGilaiabgUcaRiaaiYcacqGHRaWkcqGHQm s8caaIPaaaaa@519E@ . Число фотонов в моде резонатора выбрано равным n=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaai2 dacaaIXaaaaa@3868@ . Значения параметров расстройки керровской нелинейности в случае а): Δ=0.01γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ypaiaaicdacaaIUaGaaGimaiaaigdacqaHZoWzaaa@3CAE@ , Ξ=0.01γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdGLaaG ypaiaaicdacaaIUaGaaGimaiaaigdacqaHZoWzaaa@3CCC@  (сплошная линия); Δ=3.5γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ypaiaaiodacaaIUaGaaGynaiabeo7aNbaa@3BFB@ , Ξ=0.01γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdGLaaG ypaiaaicdacaaIUaGaaGimaiaaigdacqaHZoWzaaa@3CCC@  (штриховая линия) и Δ=12γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ypaiaaigdacaaIYaGaeq4SdCgaaa@3B3E@ , Ξ=0.01γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdGLaaG ypaiaaicdacaaIUaGaaGimaiaaigdacqaHZoWzaaa@3CCC@  (пунктирная линия). В случае б): Δ=0.01γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ypaiaaicdacaaIUaGaaGimaiaaigdacqaHZoWzaaa@3CAE@ , Ξ=0.01 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdGLaaG ypaiaaicdacaaIUaGaaGimaiaaigdaaaa@3B25@  (сплошная линия) и Δ=0.01γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ypaiaaicdacaaIUaGaaGimaiaaigdacqaHZoWzaaa@3CAE@ , Ξ=2.5γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdGLaaG ypaiaaikdacaaIUaGaaGynaiabeo7aNbaa@3C18@  (пунктирная линия)

Fig. 2.5. Dependence of negatives ε 23 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaaikdacaaIZaaabeaaaaa@393F@  ( a) on the reduced time γt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaam iDaaaa@3893@  for the initial state of qubits (1/ 3 )(|+,+,+|+,,++|,+,+) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaaig dacaaIVaWaaOaaaeaacaaIZaaaleqaaOGaaGykaiaaiIcacaaI8bGa ey4kaSIaaGilaiabgUcaRiaaiYcacqGHsislcqGHQms8cqGHRaWkca aI8bGaey4kaSIaaGilaiabgkHiTiaaiYcacqGHRaWkcqGHQms8cqGH RaWkcaaI8bGaeyOeI0IaaGilaiabgUcaRiaaiYcacqGHRaWkcqGHQm s8caaIPaaaaa@519E@ . The number of photons in the resonator mode is chosen to be n=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaai2 dacaaIXaaaaa@3868@ . Values of Kerr nonlinearity detuning parameters in case a): Δ=0.01γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ypaiaaicdacaaIUaGaaGimaiaaigdacqaHZoWzaaa@3CAE@ , Ξ=0.01γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdGLaaG ypaiaaicdacaaIUaGaaGimaiaaigdacqaHZoWzaaa@3CCC@  (solid line); Δ=3.5γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ypaiaaiodacaaIUaGaaGynaiabeo7aNbaa@3BFB@ , Ξ=0.01γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdGLaaG ypaiaaicdacaaIUaGaaGimaiaaigdacqaHZoWzaaa@3CCC@  (dashed line) and Δ=12γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ypaiaaigdacaaIYaGaeq4SdCgaaa@3B3E@ , Ξ=0.01γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdGLaaG ypaiaaicdacaaIUaGaaGimaiaaigdacqaHZoWzaaa@3CCC@  (dotted line). In case b): Δ=0.01γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ypaiaaicdacaaIUaGaaGimaiaaigdacqaHZoWzaaa@3CAE@ , Ξ=0.01 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdGLaaG ypaiaaicdacaaIUaGaaGimaiaaigdaaaa@3B25@  (solid line) and Δ=0.01γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ypaiaaicdacaaIUaGaaGimaiaaigdacqaHZoWzaaa@3CAE@ , Ξ=2.5γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdGLaaG ypaiaaikdacaaIUaGaaGynaiabeo7aNbaa@3C18@  (dotted line)

 

Рис 2.6. Зависимость отрицательности ε 12 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaaigdacaaIYaaabeaaaaa@393D@  от приведенного времени γt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaam iDaaaa@3893@  для начального состояния кубитов (1/ 2 )(|+,+,++|,,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaaig dacaaIVaWaaOaaaeaacaaIYaaaleqaaOGaaGykaiaaiIcacaaI8bGa ey4kaSIaaGilaiabgUcaRiaaiYcacqGHRaWkcqGHQms8cqGHRaWkca aI8bGaeyOeI0IaaGilaiabgkHiTiaaiYcacqGHsislcqGHQms8caaI Paaaaa@49D9@ . Число фотонов в моде выбрано равным n=3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaai2 dacaaIZaaaaa@386A@ . Значение параметра расстройки: Δ=0.01γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ypaiaaicdacaaIUaGaaGimaiaaigdacqaHZoWzaaa@3CAE@ , Ξ=0.01γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdGLaaG ypaiaaicdacaaIUaGaaGimaiaaigdacqaHZoWzaaa@3CCC@  (сплошная линия); Δ=2γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ypaiaaikdacqaHZoWzaaa@3A83@ , Ξ=0.01γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdGLaaG ypaiaaicdacaaIUaGaaGimaiaaigdacqaHZoWzaaa@3CCC@  (штриховая линия) и Δ=3.5γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ypaiaaiodacaaIUaGaaGynaiabeo7aNbaa@3BFB@ , Ξ=0.01γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdGLaaG ypaiaaicdacaaIUaGaaGimaiaaigdacqaHZoWzaaa@3CCC@ (пунктирная линия) 

Fig. 2.6. Dependence of the negativity of ε 12 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaaigdacaaIYaaabeaaaaa@393D@  on the reduced time γt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaam iDaaaa@3893@  for the initial state of qubits (1/ 2 )(|+,+,++|,,) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaaig dacaaIVaWaaOaaaeaacaaIYaaaleqaaOGaaGykaiaaiIcacaaI8bGa ey4kaSIaaGilaiabgUcaRiaaiYcacqGHRaWkcqGHQms8cqGHRaWkca aI8bGaeyOeI0IaaGilaiabgkHiTiaaiYcacqGHsislcqGHQms8caaI Paaaaa@49D9@ . The number of photons in the mode is chosen to be n=3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaai2 dacaaIZaaaaa@386A@ . The value of the detuning parameter: Δ=0.01γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ypaiaaicdacaaIUaGaaGimaiaaigdacqaHZoWzaaa@3CAE@ , Ξ=0.01γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdGLaaG ypaiaaicdacaaIUaGaaGimaiaaigdacqaHZoWzaaa@3CCC@  (solid line); Δ=2γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ypaiaaikdacqaHZoWzaaa@3A83@ , Ξ=0.01γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdGLaaG ypaiaaicdacaaIUaGaaGimaiaaigdacqaHZoWzaaa@3CCC@  (dashed line) and Δ=3.5γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaaG ypaiaaiodacaaIUaGaaGynaiabeo7aNbaa@3BFB@ , Ξ=0.01γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdGLaaG ypaiaaicdacaaIUaGaaGimaiaaigdacqaHZoWzaaa@3CCC@  (dotted line) 

 

Выводы 

Таким образом, в данной статье нами исследована динамика перепутывания пар кубитов в системе, состоящей из трех идентичных кубитов, нерезонансно взаимодействующих с модой фоковского поля идеального резонатора со средой Керра. В работе рассмотрены три типа начальных состояний кубитов: сепарабельные, бисепарабельные и истинно перепутанные состояния W MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaaaa@36CF@  - и GHZ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raiaadI eacaWGAbaaaa@386B@  -типа. Результаты численного моделирования отрицательности пар кубитов показали, что наличие расстройки и керровской нелинейности в случае начального неперепутанного состояния пары кубитов может приводить к существенному увеличению степени их перепутывания, индуцированного полем резонатора. В случае начального перепутанного состояния пары кубитов расстройка и керровская среда могут приводить к стабилизации начального перепутывания кубитов. Нерезонансное взаимодействие и керровская среда могут также подавлять эффект мгновенной смерти перепутывания кубитов. Таким образом, расстройка и керровская нелинейность могут выступать в качестве эффективного механизма контроля и управления критерия перепутывания кубитов в резонаторах.

×

About the authors

Alexander R. Bagrov

Samara National Research University

Email: alexander.bagrov00@mail.ru
ORCID iD: 0000-0002-1098-0300

undergraduate student of the Department of General and Theoretical Physics

Russian Federation, 34, Moskovskoye shosse, Samara, 443086

Eugene K. Bashkirov

Samara National Research University

Author for correspondence.
Email: bashkirov.ek@ssau.ru
ORCID iD: 0000-0001-8682-4956

Doctor of Physical and Mathematical Sciences, professor of the Department of General and Theoretical Physics

Russian Federation, 34, Moskovskoye shosse, 443086

References

  1. Kendon V.M., Nemoto K., Munro W.J. Typical entanglement in multi-qubit systems. Journal of Modern Optics, 2002, vol. 49, issue 10, pp. 1709–1716. DOI: http://doi.org/10.1080/09500340110120914.
  2. Most Y., Shimoni Y., Biham O. Formation of multipartite entanglement using random quantum gates. Physical Review A: Atomic, molecular, and optical physics, 2007, vol. 76, issue 2, article number 022328. DOI: http://dx.doi.org/10.1103/PhysRevA.76.022328.
  3. Zhi P., Hu Y. Construct maximally five- and seven-qubit entangled states via three - qubit GHZ state. International Journal of Theoretical Physics, 2022, vol. 36, issue 30, article number 2250215. DOI: http://doi.org/10.1142/S0217979222502150.
  4. Kazuyuki F., Kyoko H., Ryosuke K., Tatsuo S., Yukako W. Explicit Form of the Evolution Operator of TAVIS-CUMMINGS Model: Three and Four Atoms Cases. International Journal of Geometric Methods in Modern Physics, 2012, vol. 1, number 6, pp. 721–730. DOI: http://doi.org/10.1142/S0219887804000344.
  5. Rinner S.J., Pittorino T. Generation of Multipartite Entangled States Using Switchable Coupling of Cooper-Pair-Boxes. Journal of Modern Physics, 2020, vol. 11, no. 10, pp. 1514–1527. DOI: http://doi.org/10.4236/jmp.2020.1110093.
  6. Wendin G. Quantum information processing with super-conducting circuits: a review. Reports on Progress in Physics, 2017, vol. 80, no. 10, article number 106001. DOI: http://dx.doi.org/10.1088/1361-6633/aa7e1a.
  7. Kjaergaard M., Schwartz M.E., Braum¨uller J., Krantz P., Wang J.-I., Gustavsson S., Oliver W.D. Superconducting Qubits: Current State of Play. Annual Reviews of Condensed Matter Physics, 2020, vol. 11, pp. 369–395. DOI: http://doi.org/10.1146/annurev-conmatphys-031119-050605.
  8. Huang H.-L., Wu D., Fan D., Zhu X. Superconducting quantum computing: a review. Science China. Information Sciences, 2020, vol. 63, article number 180501. DOI: http://dx.doi.org/10.1007/s11432-020-2881-9.
  9. Chen J. Review on Quantum Communication and Quantum Computation. Journal of Physics: Conference Series, 2021, vol. 1865, article number 022008. DOI: http://dx.doi.org/10.1088/1742-6596/1865/2/022008.
  10. Biamonte J., Faccin M., De Domenico M. Complex networks from classical to quantum. Communications Physics, 2019, vol. 2, article number 53. DOI: http://dx.doi.org/10.1038/s42005-019-0152-6.
  11. Mooney G.J., Hill C.D., Hollenberg L.C.L. Entanglement in a 20-Qubit Superconducting Quantum Computer. Scientific Reports, 2019, vol. 9, article number 13465. DOI: http://doi.org/10.1038/s41598-019-49805-7.
  12. Apollaro T.J.G., Lorenzo S., Plastina F., Consiglio M., Zyczkowski K. Entangled States Are Harder to Transfer than Product States. Entropy, 2023, vol. 25, issue 1, article number 46. DOI: http://dx.doi.org/10.3390/e25010046.
  13. Nieman K., Rangan K.K., Durand H. Control Implemented on Quantum Computers: Effects of Noise, Nondeterminism, and Entanglement. Industrial Engineering Chemistry Research, 2022, vol. 61, issue 28, pp. 10133–10155. DOI: http://doi.org/10.1021/acs.iecr.2c00454.
  14. Arute F. [et al.] Quantum supremacy using a programmable superconducting processor. Nature, 2019, vol. 574, pp. 505–510. DOI: http://doi.org/10.1038/s41586-019-1666-5.
  15. Ball P. First quantum computer to pack 100 qubits enters crowded race. Nature, 2021, vol. 599, no. 7886, p. 542. DOI: http://dx.doi.org/10.1038/d41586-021-03476-5.
  16. Lacroix D. Symmetry-Assisted Preparation of Entangled Many-Body States on a Quantum Computer. Physical Review Letters, 2020, vol. 125, article number 230502. DOI: https://doi.org/10.1103/PhysRevLett.125.230502.
  17. Peres A. Separability Criterion for Density Matrices. Physical Review Letters, 1996, vol. 77, pp. 1413–1415. DOI: http://doi.org/10.1103/PhysRevLett.77.1413.
  18. Horodecki R., Horodecki M., Horodecki P. Separability of Mixed States: Necessary and Sufficient Condition. Physics Letters A, 1996, vol. 223, pp. 333–339. DOI: http://doi.org/10.1016/S0375-9601(96)00706-2.
  19. Wootters W.K. Entanglement of Formation of an Arbitrary State of Two Qubits. Physical Review Letters, 1998, vol. 80, article number 2245. DOI: https://doi.org/10.1103/PhysRevLett.80.2245.
  20. Zha X., Yuan C., Zhang Y. Generalized criterion for a maximally multi-qubit entangled state. Laser Physics Letters, 1998, vol. 10, number 4, article number 045201. DOI: http://doi.org/10.1088/1612-2011/10/4/045201.
  21. Filippov S.N. Quantum Mappings and Characterization of Entangled Quantum States. Journal of Mathematical Sciences, 2019, vol. 241, pp. 210–236. DOI: http://doi.org/10.1007/s10958-019-04418-3
  22. Seevinck M., G¨uhne O. Separability criteria for genuine multiparticle entanglement. New Journal of Physics, 2010, vol. 12, article number 053002. DOI: http://doi.org/10.1088/1367-2630/12/5/053002.
  23. Pereira L., Zambrano L., Delgado A. Scalable estimation of pure multi-qubit states. npj Quantum Information, 2022, vol. 8, article number 57. DOI: http://dx.doi.org/10.1038/s41534-022-00565-9.
  24. Zhahir A.A., Mohd S.M., Shuhud M.I.M., Idrus B., Zainuddin H., Jan N.M., Wahiddin M. Entanglement Quantification and Classification: A Systematic Literature Review. International Journal of Advanced Computer Science and Applications, 2022, vol. 13, issue 5, pp. 218–225. DOI: http://dx.doi.org/10.14569/IJACSA.2022.0130527.
  25. Dur W., Cirac J.I. Classification of multiqubit mixed states: Separability and distillability properties. Physical Review A: Atomic, molecular, and optical physics, 2000, vol. 62, article number 042314. DOI: http://doi.org/10.1103/PhysRevA.61.042314.
  26. Dur W., Cirac J.I., Vidal G. Three qubits can be entangled in two inequivalent ways. Physical Review A: Atomic, molecular, and optical physics, 2000, vol. 62, article number 062314. DOI: http://doi.org/10.1103/PhysRevA.62.062314.
  27. Acin A., Bru_ D., Lewenstein M., Sanpera A. Classification of Mixed Three-Qubit States. Physical Review Letters, 2000, vol. 87, article number 040401. DOI: http://doi.org/10.1103/PhysRevLett.87.040401.
  28. Garcia-Alcaine G., Sabin C. A classification of entanglement in three-qubit systems. European Physical Journal D, 2008, vol. 48, pp. 435–442. DOI: http://doi.org/10.1140/epjd/e2008-00112-5.
  29. Siti Munirah Mohd S.M., Idrus B., Zainuddin H., Mukhtar M. Entanglement Classification for a Three-qubit System using Special Unitary Groups. International Journal of Advanced Computer Science and Applications, 2019, vol. 10, issue 7, pp. 374–379. DOI: http://dx.doi.org/10.14569/IJACSA.2019.0100751.
  30. Akbari-Kourbolagh Y. Entanglement criteria for the three-qubit states. International Journal of Quantum Information, 2017, vol. 15, no. 7, article number 1750049. DOI: http://doi.org/10.1142/S0219749917500496.
  31. Bagrov A.R., Bashkirov E.K. Dynamics of the three-qubits Tavis — Cummings model. Vestnik Samarskogo universiteta. Estestvennonauchnaia seriia = Vestnik of Samara University. Natural Science Series, 2022, vol. 28, issue 1–2, pp. 95–105. DOI: http://doi.org/10.18287/2541-7525-2022-28-1-2-95-105. (In Russ.)
  32. Zhang B. Entanglement between two qubits interacting with a slightly detuned thermal field. Optics Communications, 2010, vol. 283, issue 23, pp. 4676–4679. DOI: http://doi.org/10.1016/j.optcom.2010.06.094.
  33. Bashkirov E.K. Thermal Entanglement Between a Jaynes-Cummings Atom and an Isolated Atom. International Jornal of Theoretical Physics, 2018, vol. 57, issue 12, pp. 3761–3771. DOI: http://doi.org/10.1007/s10773-018-3888-y.
  34. Al Naim A.F., Khan J.Y., Khalil E.M., Abdel-Khalek S. Effects of Kerr Medium and Stark Shift Parameter on Wehrl Entropy and the Field Purity for Two-Photon Jaynes–Cummings Model Under Dispersive Approximation. Journal of Russian Laser Research, 2019, vol. 40, issue 1, pp. 20–29. DOI: http://doi.org/10.1007/s10946-019-09764-w.
  35. Aldaghfag S.A., Berrada K., Abdel-Khalek S. Entanglement and photon statistics of two dipole-dipole coupled superconducting qubits with Kerr-like nonlinearities. Results in Physics, 2020, vol. 16, number 102978. DOI: http://doi.org/10.1016/j.rinp.2020.102978.
  36. Bashkirov E.K. Thermal entanglement in Tavis-Cummings models with Kerr media. Proceedings of SPIE, 2022, vol. 12193, article number 121930Q. DOI: http://doi.org/10.1117/12.2625838.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 2.1. Dependence of the negatives "12 (a) on the reduced time t for the initial state of qubits |+;−; −⟩. The number of photons in the resonator mode is chosen to be n = 1. Values of Kerr nonlinearity detuning parameters in case a): Δ = 0:01 , Ξ = 0:01 (solid line); Δ = 2:5 , Ξ = 0:01 (dashed line) and Δ = 9:5 , Ξ = 0:01 (dotted line). In case b): Δ = 0:01 , Ξ = 0:01 (solid line) and Δ = 0:01 , Ξ = (dotted line)

Download (270KB)
3. Fig. 2.2. Dependence of the negatives "23 (a) on the reduced time t for the initial state of qubits |+;−; −⟩. The number of photons in the resonator mode is chosen to be n = 1. Values of Kerr nonlinearity detuning parameters in case a): Δ = 0:01 , Ξ = 0:01 (solid line); Δ = 2:5 , Ξ = 0:01 (dashed line) and Δ = 9:5 , Ξ = 0:01 (dotted line). In case b): Δ = 0:01 , Ξ = 0:01 (solid line) and Δ = 0:01 , Ξ = (dotted line)

Download (291KB)
4. Fig. 2.3. Dependence of the negatives "12 (a) on the reduced time t for the initial state of qubits (1= √ 2)(|+;+; −⟩ + |+;−;+⟩). The number of photons in the resonator mode is chosen equal to n = 2. The values of the parameters of the Kerr nonlinearity detuning in the case of a): Δ = 0:01 , Ξ = 0:01 (solid line); Δ = 5 , Ξ = 0:01 (dashed line) and Δ = 13 , Ξ = 0:01 (dotted line). In case b): Δ = 0:01 , Ξ = 0:01 (solid line) and Δ = 0:01 , Ξ = (dotted line)

Download (253KB)
5. Fig. 2.4. Dependence of negatives "23 for the initial state of qubits (1= √ 2)(|+;+;−; 2 rangle + |+;−;+⟩) when = 4 . The number of photons in the resonator mode is chosen to be n = 1. Values of Kerr nonlinearity detuning parameters in case a): Δ = 0:01 , Ξ = 0:01 (solid line); Δ = 5 , Ξ = 0:01 (dashed line) and Δ = 13 , Ξ = 0:01 (dotted line). In case b): Δ = 0:01 , Ξ = 0:01 (solid line) and Δ = 0:01 , Ξ = 2:5 (dotted line)

Download (371KB)
6. Fig. 2.5. Dependence of negatives "23 (a) on the reduced time t for the initial state of qubits (1= √ 3)(|+;+; −⟩ + |+;−;+⟩ + |−;+;+⟩). The number of photons in the resonator mode is chosen to be n = 1. Values of Kerr nonlinearity detuning parameters in case a): Δ = 0:01 , Ξ = 0:01 (solid line); Δ = 3:5 , Ξ = 0:01 (dashed line) and Δ = 12 , Ξ = 0:01 (dotted line). In case b): Δ = 0:01 , Ξ = 0:01 (solid line) and Δ = 0:01 , Ξ = 2:5 (dotted line)

Download (319KB)
7. Fig. 2.6. Dependence of the negativity of "12 on the reduced time t for the initial state of qubits (1= √ 2)(|+;+;+⟩ + |−;−; −⟩). The number of photons in the mode is chosen to be n = 3. The value of the detuning parameter: Δ = 0:01 , Ξ = 0:01 (solid line); Δ = 2 , Ξ = 0:01 (dashed line) and Δ = 3:5 , Ξ = 0:01 (dotted line)

Download (175KB)

Copyright (c) 2023 Bagrov A.R., Bashkirov E.K.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies