PHAPL WEB APPLICATION FOR AUTOMATIC BUILDING AND RESEARCH OF PHASE PORTRAITS ON PLANE


Cite item

Abstract

The article aims to document PhaPl that’s a teaching web application to plot and research phase portraits of autonomous systems of 2 differential equations on a plane. The web application is very different compared with previously known programs: it has very easy graphical user interface and it gives clarity because it demonstrates all steps of solution. To get the full solution, it is enough to just enter a system to research. Initial conditions to plot phase trajectories are chosen automatically. Graphical representation of the phase plane is interactive. The web application is based on popular Free Software (SymPy, PyPy.js, MathJax, LZMA-JS). The web application is portable and works in web browsers that support JavaScript and canvas element of HTML5. The web application can be downloaded and used offline without connection to the Internet. The article describes advantages, disadvantages and peculiar properties of the web application. The software is deployed inPlekhanovRussianUniversityof Economics since 2018.

About the authors

A. A. Cherepanov

Plekhanov Russian
University of Economics

Author for correspondence.
Email: morenov@ssau.ru

References

  1. Cherepanov A.A. PhaPl: Phase Plane Helper 2018. Available at: https://phapl.github.io/ (accessed 30.05.2018).
  2. Astashova I.V., Nikishkin V.A. Praktikum po kursu ”Differentsial’nye uravneniia”. Uchebnoe posobie. Izd. 3-e, ispravlennoe . M.: Izd. tsentr EAOI, 2010, 94 p., illustrated. Available at: http://new.math.msu.su/diffur/main_du_2010.pdf .
  3. Lapshin V. P., Turkin I. A. Modelirovanie dinamiki formoobrazuiushchikh dvizhenii pri sverlenii glubokikh otverstii malogo diametra . Vestnik Adygeiskogo gosudarstvennogo universiteta. Ser. 4: Estestvenno-matematicheskie i tekhnicheskie nauki , 2012, no. 4 (110), pp. 226–233. URL: http://cyberleninka.ru/article/n/modelirovanie-dinamiki-formoobrazuyuschih-dvizheniy-pri-sverlenii-glubokih-otverstiy-malogo-diametra .
  4. Agureev I.E., Atlas E.E. Ispol’zovanie printsipov nelineinoi dinamiki pri issledovanii dissipativnykh modelei transportnykh protsessov v biofizicheskikh sistemakh . VNMT , 2007, no. 1, pp. 41–43. Available at: http://cyberleninka.ru/article/n/i-spolzovanie-printsipov-nelineynoy-dinamiki-pri-issledovanii-dissipativnyh-modeleytransportnyh-protsessov-v-biofizicheskih-sistemah .
  5. Barinova Ye.V., Timbay I.A. Issledovanie ploskogo dvizheniia otnositel’no tsentra mass spuskaemogo apparata s trigarmonicheskoi momentnoi kharakteristikoi pri vkhode v atmosferu . Vestnik SGAU , 2010, no. 1, pp. 9–19. URL: http://cyberleninka.ru/article/n/issledovanie-ploskogo-dvizheniya-otnositelno-tsentra-mass-spuskaemogo-apparata-strigarmonicheskoy-momentnoy-harakteristikoy-pri .
  6. Astashova I. V. Kachestvennye svoistva reshenii kvazilineinykh obyknovennykh differentsial’nykh uravnenii . In: Kachestvennye svoistva reshenii differentsial’nykh uravnenii i smezhnye voprosy spektral’nogo analiza. Pod red. I.V. Astashovoi . M.: IuNITI-DANA, 2012, pp. 22–288. Available at: https://elibrary.ru/item.asp?id=20908128 .
  7. Astashova I. V. Primenenie dinamicheskikh sistem k issledovaniiu asimptoticheskikh svoistv reshenii nelineinykh differentsial’nykh uravnenii vysokikh poriadkov. . Sovremennaia matematika i ee prilozheniia , 2003, Vol. 8, pp. 3–33. URL: https://elibrary.ru/item.asp?id=26344653 .
  8. Astashova I. On asymptotic classification of solutions to nonlinear regular and singular third- and fourth-order differential equations with power nonlinearity. Differential and Difference Equations with Applications. — Springer Proceedings in Mathematics & Statistics. New York, N.Y., United States: New York, N.Y., United States, 2016, pp. 191–204. doi: 10.1007/978-3-319-32857-7 .
  9. Vaidyanathan S. Lotka-Volterra population biology models with negative feedback and their ecological monitoring. Int J PharmTech Res, 2015, Vol. 8., no. 5., pp. 974–981. Available at: https://pdfs.semanticscholar.org/8086/92dd5826922b7be834c05e7a41994bb3e135.pdf .
  10. Astashova I., Chebotaeva V., Cherepanov A. Mathematical models of epidemics in closed populations and their visualization via web application phapl. WSEAS Transactions on Biology and Biomedicine, 2018, Vol. 15, no. 12, pp. 112–118. ISSN / E-ISSN: 1109-9518 / 2224-2902. Available at: http://www.wseas.org/multimedia/journals/biology/2018/a265908-043.php .
  11. Cherepanov A.A. Programmnyi kompleks PhaPl dlia avtomaticheskogo postroeniia i issledovaniia fazovykh portretov na ploskosti . Otkrytoe obrazovanie , 2017, Vol. 21, no. 3, pp. 66–72. DOI: https://doi.org/10.21686/1818-4243-2017-3-66-72 .
  12. Miller H., Hohn H. MIT Mathlets 2009. Available at: http://mathlets.org/mathlets/ .
  13. Wolfram|Alpha: Computational Intelligence 2009. Available at: https://www.wolframalpha.com/ .
  14. Savov I. SymPy in a PyPy.js shell 2017. Available at: https://minireference.com/static/tmp/pypyjs_sympy_demo/ .
  15. Cherepanov A. A. GitHub - phapl/phapl: smart tool to plot and research phase planes, offline and online 2018. Available at: https://github.com/phapl/phapl .
  16. Honda Y. Maxima on Android 2013. Available at: https://sites.google.com/site/maximaonandroid/ .
  17. Wheeler, David A. ”Why Open Source Software/Free Software (OSS/FS, FOSS, or FLOSS)? Look at the Numbers!” 2014. Available at: http://www.dwheeler.com/oss_fs_why.html .
  18. Cherepanov A. A. O tipakh osobykh tochek dinamicheskoi sistemy opredelennogo vida . In: Materialy konferentsii, prokhodivshikh v ramkakh ”Dnei studencheskoi nauki MESI. Osen’-2014” Sbornik nauchnykh trudov, chast’ 2 / Moskovskii gosudarstvennyi universitet ekonomiki, statistiki i informatiki . M., 2015, pp. 259–265 .

Copyright (c) 2019 А. А. Черепанов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies