BASIS OF THE PROPERTIES OF WEIGHTED EXPONENTIAL SYSTEMS WITH EXCESS


Cite item

Abstract

The main aim of this paper is the determination of a class of such functions for which a weighted exponential system becomes complete and minimal in appropriate space when exactly one of its terms is eliminated. It is shown that the system, obtained in this way cannot be a Schouder basis in this space. The last fact shows that Muckenhoupt-type criterion for the exponential system to be the Schauder basis in Lebesgue spaces after elimination of an element does not exist. This paper generalizes the results of the paper by E.S. Golubeva.

About the authors

Aydin Shukur Shukurov

Институт Математики и Механики, Национальная Академия Наук Азербайджана

Author for correspondence.
Email: morenov.sv@ssau.ru
Azerbaijan

References

  1. K.I. Babenko On conjugate functions. Doklady Akad. Nauk SSSR (N.S.) 62, (1948), pp. 157–160 .
  2. B.T. Bilalov, S.G. Veliyev On completeness of exponent system with complex coefficients in weight spaces. Trans. of NAS of Azer., 2005, Vol. XXV, no. 7, pp. 9-14 .
  3. B.T. Bilalov, S.G. Veliyev Bases of eigenfunctions of two discontinuous differential operators. Diff. Uravn., 2006, Vol. 42, no. 9, pp. 190-192 .
  4. K.S. Kazaryan, P.I. Lizorkin Multipliers, bases and unconditional bases of the weighted spaces B and SB. Trudy Mat. Inst. Steklov, no. 187 (1989), pp. 98–115 .
  5. S.S. Pukhov, A.M. SedletskiД Bases of exponentials, sines, and cosines in weighted spaces on a finite interval. Dokl. Akad. Nauk, 425 (2009), no. 4, pp. 452–455 .
  6. E.I. Moiseev On the basis property of sine and cosine systems in a weighted space. Differ. Uravn., 34 (1998), no. 1, pp. 40–44 .
  7. E.I. Moiseev The basis property of a system of eigenfunctions of a differential operator in a weighted space. Differ. Uravn., 35 (1999), no. 2, pp. 200–205 .
  8. E.S. Golubeva The System of Weighted Exponentials with Power Weights. Vestnik SamGU. Estestvenno-Nauchnaya Seriia, 2011, no. 2(83), pp. 15-25 .
  9. Z.V. Mamedova On Basis Properties of Degenerate Exponential System. Applied Mathematics, 2012, 3, pp. 1963-1966 .
  10. S.R. Sadigova, Z.V. Mamedova Frames from Cosines with the Degenerate Coefficients. American Journal of Applied Mathematics and Statistics, 2013, Vol. 1, no. 3, pp. 36-40 .
  11. B. Bilalov, F. Guliyeva On the Frame Properties of Degenerate System of Sines. Journal of Function Spaces and Applications, 2012, Art. ID 184186, pp. 1-12 .
  12. B.T. Bilalov, Z.V. Mamedova On the frame properties of some degenerate trigonometric systems. Dokl. Nats. Akad. Nauk Azerb., 68 (2012), no. 5, pp. 14-18 .
  13. B.T. Bilalov, F.A. Gulieva, A completeness criterion for a double power system with degenerate coefficients. Sibirsk. Mat. Zh. 54 (2013), no. 3, 536-543.
  14. V.F. Gaposhkin A generalization of the theorem of M. Riesz on conjugate functions Mat. Sb. N.S., 46(88), 1958, pp. 359-372 .
  15. B.T. Bilalov, S.R. Sadigova Frame properties of a part of exponential system with degenerate coefficients in Hardy classes Georgian Mathematical Journal (accepted, will be published in Vol. 23(2017)) .
  16. R.A. Hunt, W.S. Young A weighted norm inequality for Fourier series. Bull. Amer. Math. Soc., 80 (1974), 274, p. 277. .
  17. N.K. Bari Biorthogonal systems and bases in Hilbert space. Moskov. Gos. Univ. Uchenye Zapiski. Matematika, 148(4), (1951), 69–107 .
  18. K.S. Kazarian The multiplicative completion of basic sequences in Lp; 1 < p < 1 to bases in Lp. Dokl. Akad. Nauk Arm. SSR, Vol. 62, 1976, pp. 203-209 .
  19. K.S. Kazarian On the multiplicative completion of some incomplete orthonormal systems to bases in Lp; 1 < p < 1. Analysis Math, 1978, 4, pp. 37-52 .
  20. K.S. Kazarian Multiplicative completion of certain systems. Izv. Akad. Nauk Armyan. SSR Ser. Mat., 1978, 13(4) .
  21. L.V. Kritskov On the basis property of the system of functions feint sin(nt)g . Dokl. Akad. Nauk, 346 (1996), no. 3, pp. 297–298 .
  22. A.Sh. Shukurov Necessary condition for Kostyuchenko type systems to be a basis in Lebesgue spaces. Colloq. Math. 127 (2012), no. 1, 105–109 .
  23. A.Sh. Shukurov Addendum to "Necessary condition for Kostyuchenko type systems to be a basis in Lebesgue spaces” . Colloq. Math., 137 (2014), no. 2, pp. 297–298 .
  24. A.Sh. Shukurov The power system is never a basis in the space of continuous functions. Amer. Math. Monthly, 122 (2015), no. 2, p. 137 .
  25. A.Sh. Shukurov Impossibility of power series expansion for continuous functions. Azerb. J. Math., 6 (2016), no. 1, pp. 122–125 .

Copyright (c) 2018 Aydin Shukur Shukurov

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies