Cite item

Full Text


Multidimensional hyperbolic-elliptic equations describe important physical, astronomical and geometric processes. It is known that vibrations of elastic membranes in space according to the Hamiltonian principle can be modeled by a multidimensional wave equation. Assuming that the membrane is in equilibrium in the bending position, the Hamiltonian principle also yields the multidimensionalLaplaceequation. Consequently, the vibrations of elastic membranes in space can be modeled as the multidimensional Lavrentiev — Bitsadze equation. When studying these applications, it becomes necessary to obtain an explicit representation of the boundary value problems being studied. The author has previously studied the Dirichlet problem for multidimensional hyperbolic-elliptic equations, where a unique solvability of this problem is shown, which essentially depends on the height of the entire cylindrical region under consideration. In this paper we investigate a Dirichlet type problem in the cylindrical domain for the multidimensional Lavrentiev — Bitsadze equation and obtain an explicit form of its classical solution. In this case, the unique solvability depends only on the height of the hyperbolic part of the cylindrical domain, and a criterion for the uniqueness of the solution is given.

About the authors

S. A. Aldashev

Institute of Mathematics and Mathematical Modeling

Author for correspondence.


  1. Ludwig D. Uniform asymptotic expansions at a caustic. Communications in Pure and Applied Mathematics, 1966, Vol. 19, pp. 215–250 .
  2. Magnanini R., Talenti G. Approaching a partial differential equation of mixed elliptic-hyperbolic type. In: Anikonov Y., Bukhageim A., Kabanikhin S., Romanov V. (Eds.) Ill-posed and Inverse Problems, pp. 263–276. VSP, Utrecht, Holland, 2002 .
  3. Stoker J.J. Water Waves: The Mathematical Theory with Applications. Wiley-Interscience, New York, 1992, 600 p. .
  4. Otway T.H. Variational equations on mixed Riemannian-Lorentzian metrics. Journal of Geometric Physics, 2008, Vol. 58, pp. 1043–1061 .
  5. Hartle J.B., Hawking S.W. Wave function of the universe. Physical Review D, 1983, Vol. 28, pp. 2960–2975 .
  6. Bitsadze A.V. Nekotorye klassy uravnenii v chastnykh proizvodnykh . M.: Nauka, 1981, 448 p. .
  7. Otway T.H. Elliptic-Hyperbolic Partial Differential Equations. Berlin: Springer, 2015, 128 p. .
  8. Nakhushev A.M. Zadachi so smeshcheniem dlia uravneniia v chastnykh proizvodnykh . M.: Nauka, 2006, 287 p. .
  9. Nakhushev A.M. O zadache Dirikhle dlia uravneniia smeshannogo tipa . Dokl. Adyg (Cherkes) mezhd. akad. nauk , 2006, Vol. 8, no. 2, pp. 32–42 .
  10. Aldashev S.A. Korrektnost’ zadachi Dirikhle v tsilindricheskoi oblasti dlia mnogomernogo uravneniia Lavrent’eva — Bitsadze . Izvestiia NAN RK. Ser. fiziko-matematicheskaia , 2014, no. 3, pp. 136–143 .
  11. Aldashev S.A. Korrektnost’ zadachi Dirikhle v tsilindricheskoi oblasti dlia odnogo klassa mnogomernykh giperboloellipticheskikh uravnenii . Nelineinye kolebaniia , 2013, Vol. 16, no. 4, p. 435–451 .
  12. Soldatov A.P. Zadachi tipa Dirikhle dlia uravneniia Lavrent’eva — Bitsadze . Dokl. RAN , 1993, Vol. 332, no. 6, pp. 696–69: Vol. 333, no. 1, pp. 16–18 .
  13. Soldatov A.P. Zadachi tipa Dirikhle dlia uravneniia Lavrent’eva — Bitsadze . Differents. uravneniia , 1994, Vol. 30, no. 11, pp. 2001–2009 .
  14. Mikhlin S.G. Mnogomernye singuliarnye integraly i integral’nye uravneniia . M.: Fizmatgiz, 1962, 254 p. .
  15. Kamke E. Spravochnik po obyknovennym differentsial’nym uravneniiam . M.: Nauka, 1965, 703 p. .
  16. Bateman G., Erdelyi A. Vysshie transtsendentnye funktsii . M.: Nauka, Vol. 2, 1974, 295 p. .
  17. Tikhonov A.N., Samarskii A.A. Uravneniia matematicheskoi fiziki . M.: Nauka, 1966, 724 p. .
  18. Aldashev S.A. The well-posedness of the Dirihlet problem in the cylindric domain for the multidimensional wave equation. Math. Probl. Eng., 2010, Vol. 2010, Article ID653215-7 p. .
  19. Aldashev S.A. Correctness of the Dirichlet problem in the cylindrical domain for multidimensional hyperbolic equations by the wave operator. Dokl. Adyg (Cherkes) mezhd. akad. nauk , 2011, Vol. 13, no. 1, pp. 21–29 .

Supplementary files

Supplementary Files

Copyright (c) 2018 Aldashev S.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies