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SYMMETRIC FINITE REPRESENTABILITY OF ¢ IN ORLICZ SPACES!

ABSTRACT

It is well known that a Banach space need not contain any subspace isomorphic to a space 7 (1 < p < c0)
or ¢ (it was shown by Tsirel’son in 1974). At the same time, by the famous Krivine’s theorem, every Banach
space X always contains at least one of these spaces locally, i.e., there exist finite-dimensional subspaces of
X of arbitrarily large dimension n which are isomorphic (uniformly) to £ for some 1 <p < oo or ¢f. In this
case one says that (P (resp. c) is finitely representable in X. The main purpose of this paper is to give a
characterization (with a complete proof) of the set of p such that ¢ is symmetrically finitely representable
in a separable Orlicz space.
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Introduction

While a Banach space X need not contain any subspace isomorphic to a space ¥ (1 < p < o) or °

(as was shown by Tsirel’son in [1]), it will always contain at least one of these spaces locally. This means that
there exist finite-dimensional subsets of X of arbitrarily large dimension n which are isomorphic (uniformly)
to £, for some 1 < p < oo or cj. This fact is the content of the famous result proved by Krivine in [2]
(see also [3]). To state it we need some definitions.

Suppose X is a Banach space, 1 < p < oo, and {z;}52; is a bounded sequence in X. The space ¢ is said
to be block finitely representable in {z;}32, if for every n € N and € > 0 there exist 0 =mo <mq < ... < my,
and o; € R such that the vectors uy = Z?i’“mk L1 @iz, k=1,2,... n, satisty the inequality

(1+e)lall, < Zakuk < (L+2)llallp

for arbitrary a = (ax)p_; € R™. In what follows,
n 1/p
= p if =
lall, (Zu) it p < oo, and [l = mox o

The space P, 1 < p < oo, is said to be finitely representable in X if for every n € N and € > 0 there exist
x1,%2,...,&, € X such that for any a = (ag)p_, € R

(1+e)lall, < < (L+2)llallp

IThe work was completed as a part of the implementation of the development program of the Scientific and Educational
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(alternatively, in the case p = oo, one might say that ° is finitely representable in X).

Clearly, if ¢? is block finitely representable in some sequence {z;}32; C X, then ¢? is finitely representable
in X. Therefore, the following famous result proved by Krivine in [2] (see also [3] and [4, Theorem 11.3.9])
implies the finite representability of ¢ for some 1 < p < oo in any Banach space.

Theorem (Krivine)

Let {z;}2, be an arbitrary normalized sequence in a Banach space X such that the vectors z; do not
form a relatively compact set. Then ¢? is block finitely representable in {z;}$°, for some p € [1,].

Here, we counsider both Orlicz sequence and function spaces (see the next section for the definition) and in
the separable case we give a characterization of the set of p such that (P is symmetrically finitely representable
in such a space. To introduce the notion of symmetric finite representability, we need some more definitions.

A sequence y = (yx)72, will be called a copy of a sequence = = (xy)72; if  and y have the same entries,
that is, there is a permutation 7 of the set of positive integers such that y,) = zx for all k=1,2,....

Given a measurable function z(¢) on [0,1], we set

ng (1) :==m({t € [0,a) : |z(t)] > 7}), T>0.

Here and in the sequel, m denotes the Lebesgue measure. Functions x(t) and y(t) are called equimeasurable
if ng (1) =ny(r) for each 7> 0.

Let X be a symmetric sequence space (see e.g. [5]), 1 < p < oo. We say that 7 is symmetrically finitely
representable in X if for every n € N and each & > 0 there exists an element xy € X such that for its
disjoint copies zy, k=1,2,...,n, and for every (ax)jy_, € R" we have

g AT

Similar notion will be defined also in the function case. Let X be a symmetric function space on [0, 1]
[6]. The space (P is symmetrically finitely representable in X if for every n € N and € > 0 there exist
equimeasurable and disjointly supported on [0, 1] functions u,(t), ¢ = 1,2,...,n, such that for all (ax)}_, € R"

n
(1= )lally < | Y awi] <
i=1

The set of all p € [1,00] such that ¢P is symmetrically finitely representable in X (in both sequence and
function cases) we will denote by F(X).

From the definition? of the Matuszewska-Orlicz indices af and A% (resp. a¥ and A%) of an Orlicz
sequence space {y (resp. an Orlicz function space Ly) it follows that F(X) C [a%,8%] (resp. F(X) C
[@%, B%])- The main purpose of this paper is to give a detailed proof of the opposite embedding for both
Orlicz sequence and function spaces. To this end, following the idea mentioned in [6, p. 140-141] we will
make use of the proof of Theorem 4.a.9 from [7].

Similar problems for Orlicz function spaces (and more generally symmetric spaces) on (0,00) were
considered in the paper [8].

(1+2) " lall, < < (L+e)allp

(1 +&)lallp

1. Preliminaries

1.1. Orlicz sequence spaces

A detailed information related to Orlicz sequence and function spaces see in monographs [9-11].
The Orlicz sequence spaces are a natural generalization of the ¢P-spaces, 1 < p < oo, which equipped
with the usual norms )
1/p
Crtalal”)

1
||a’||ép = Sup |ak| R p
k=1,2,...

< < 00

Let N be an Orlicz function, that is, an increasing convex continuous function on [0, 00) such that N(0) =
=0 and limy_,o N(t) = co. The Orlicz sequence space ¢y consists of all sequences a = (ax)5>,, for which
the following (Luxemburg) norm

lalley = inf{u >0: iN(%) < 1}

k=1

2See the next section.
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is finite. Without loss of generality, we will assume that N(1) = 1. In particular, if N(t) =P, we get the
lP-space, 1 < p < 0.
Recall that the Matuszewska-Orlicz indices (at zero) af, and B of an Orlicz function N are defined by

N(z)y? . . N(x)y?
al == su 1 osu T, Q¢ :=inf{p: inf
v pir rwir N(ay) b Ax v zy<1 N(zy)

> 0}.
It can be easily checked that 1 < al < 8% < oco. It is well known also that an Orlicz sequence space {y is
separable if and only if 8% < oo, or equivalently, if the function N satisfies the Ap-condition at zero, i.e.,

lim su N(Zu)
w0l N(u)

The subset hy of an Orlicz sequence space ¢y consists of all (ar)72, € {x such that

< o0

u

ZN(M) < oo for each u > 0.
k=1

One can easily check (see also [7, Proposition 4.a.2]) that hy is a separable closed subspace of ¢y and
the canonical unit vectors e, = (e}) such that e =1 and e}, =0 if i #n, n=1,2,..., form a symmetric
basis of the space hy. Recall that a basis {x,}>°; of a Banach space X is said to be symmetric if there

exists C' > 0 such that for any permutation 7 of the set of positive integers and all a, € R we have

oo o0
C_lH E anTn <CH E Aplnp
n=1 X n=1

Observe that the definition of an Orlicz sequence space £y is determined (up to equivalence of norms) by
the behaviour of the function N near zero. More precisely, the following conditions are equivalent: 1) ¢ = £y
(with equivalence of norms); 2) the canonical vector bases of the spaces hy u hys are equivalent; 3) there
are constants C' >0, ¢ > 0 and tg > 0 such that for all 0 <t <ty it holds

eN(C™') < M(t) < ¢ IN(Ct)

oo
X < H Zlanirﬂ(n) x°
n—=

(see e.g. [7, Proposition 4.a.5] or [11, Theorem 3.4]). In particular, if N is a degenerate Orlicz function, i. e.,
for some to >0 we have N(¢t) =0 if 0 <t < tg, then £y =l (with equivalence of norms).
Given Orlicz function N, we define the following subsets of the space C]0, %}

ERW::{ :O<y<a}7 ES = ﬂ E?\/',a
0<a<1
and
R i= convER, ,, C} = ﬂ CRrar
0<a<1
where 0 < a <1 and the closure is taken in the norm topology of C|0, %] All these sets are non-void norm
compact subsets of the space C[0, ] [7, Lemma 4.a.6]. It is well known that they determine to a large extent
the structure of disjoint sequences of Orlicz sequence spaces (see [7, §4.a] and [12]). Moreover, if 1 < p < oo,
then tP € C if and only if p € [o%;, 8%] [7, Theorem 4.a.9].
In the case when an Orlicz function N satisfies the Ag-condition at zero, the sets EY ,, EY, C%, and

C%; can be considered as subsets of the space C[0,1] (see the remark after Lemma 4.a.6 in [7]).

1.2. Orlicz function spaces

Let N be an Orlicz function such that N(1) = 1. Denote by Ly the Orlicz space on [0, 1] endowed with
the Luxemburg norm

()]

u

1
l2|p, = inf{u > 0: /N(

0

)dt<1}.

In particular, if N(¢) =P, 1 <p < oo, we obtain the space L, = L,[0,1] with the usual norm.
The Matuszewska-Orlicz indices a3 and S8 (at infinity) of an Orlicz function N are defined by the
formulae

N (z)y? . .. N(x)y?
afy = su :osu < ooy, J =inf{p: inf >0F.
N b {p w,ygl N(zy) } oN {p zy>1 N(zy) }
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Again 1 < aff < % < o0o. As in the case of sequence spaces, an Orlicz space Ly is separable if and only
if B < oo, or equivalently, if the function N satisfies the Ag-condition at infinity, i.e.,

. N(2u)
imsu
In contrast to the sequence case, the definition of an Orlicz function space Ly on [0,1] is determined

(up to equivalence of norms) by the behaviour of the function N(¢) for large values of t.
For every Orlicz function N we define the following subsets of the space C]0, %]

< 0

N [
E¥ 4 :={ (zy) ry > A} EY = ﬂ EY 4, CF = convESy,
’ N) As0

where the closure is taken in the norm topology of C|[0, %] Again all these sets are non-void norm compact
subsets of the space C|0, %] and they determine largely the structure of disjoint sequences in Orlicz function
spaces (see [12, Propositions 3 and 4]). Moreover, if 1 <p < oo, then t? € C% if and only if p € [aR?, 5]
[12].

Finally, if an Orlicz function N satisfies the Ag-condition at infinity, the sets EF 4, EF and CF can
be considered as subsets of the space C[0,1].

2. Symmetric finite representability of /¥ in Orlicz sequence spaces

Theorem 1

Let M be an Orlicz function satisfying the As-condition at zero. Then (P is symmetrically finitely
representable in the Orlicz sequence space ¢y if and only if p € [9,,8%], ie., F(lr) = [a%,, B8]

Proof.

As was observed in §1, we always have F(¢yr) C [a9,, 8%]. Therefore, it suffices to prove only the opposite
embedding. In other words, we need to show that for every p € [a9,,8%,], m € N and each € > 0 there exists
an element o € )y such that for its disjoint copies zx, k=1,2,...,m, and for every ¢ = (cx)7, € R" we
have

(L+e) 7 ellp < < (L+e)lellp- (1)

1373

According to the proof of Theorem 4.a.9 in [7] and a comment followed this proof on p. 144, t? € CY,
(see also §2.1). Since M satisfies the As-condition at zero, the set CY, may be considered as a subset of the
space C[0,1] (see the remark after Lemma 4.a.6 in [7] or again §2.1). Therefore, since C3; := oo oc1 Oy
we conclude that t? € Czow,zw for each n € N.

Note that the mapping

A= My(t) := M(Xt)/M(A) (2)
is continuous from I, := (0,27"] into the subset E¢ of C[0,1]. Indeed, as it is well known (see e.g. [9,

Theorem 1.1]),

M,2—n

M(t) = / p(s) ds, 3)

where p is a nondecreasing right-continuous function.
Therefore, for arbitrary Ao > Ay >0 and all 0 <t <1 we have

[M(A)M (Aat) = M(A2) M (M)

(M, () — My, (1) MOWM ()

< 70 (MOat) = M) + M(ha) = M (M)
1 Aot A2

< Mw)(/m p(s)ds+/h pl(s) ds)

< E)\Qg (A2 — A1).

Thus, mapping (2) may be extended uniquely to a map w — M, from the Stone-Cech compactification SI,
of I,, onto the set Eg/[ 9-n—1- Since tP € CR/I 5-n and the extreme points of CR/I 5—n are contained in the
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compact set EM2 », by the Krein-Milman theorem (see e.g. [13, Theorem 3.28]), there exists a probability
measure [, on the set B1, such that

= . M, (t) dpn (W), 0<t <1 (4)

Let us show that
for some probability measure v, on I, we have

—/ Ma(t) da(V)] <277, 0<t< 1. (5)
0

First, the fact that the set Q, :=QNI, (Q is the set of rationals) is dense in 81, implies that the set
{M,,r € Q,} is dense in the subset {M,,,w € 8I,} of C[0,1]. Consequently, putting Q,, = {ry}32, and

Ey:={we pl,: |M,({t)— M, ()] <27 for all 0 <t <1}, (6)

we have BI, = Uy~ Ex. Now, if F,, := E,, \ ( 2”:_11 Ep), m =1,2,..., then F,, are pairwise disjoint and
Bl, = Uy_F,,. Define the measure v, on oc-algebra of Borel subsets U of the interval I,, by
vp(U) = Z tin(Fr),
{k:r,eU}

where p, is the probability measure from (4). Since

V. (In) = Z/‘n(Fk) = Iln(ﬂln) =1,

then v, is a probability measure on I,. Moreover, by (4) and (6), for all 0 < ¢ <

—/OnMA(t)an()\)‘ = t) dpin (w / M (t) dvn (A )\

.,

< Z’ 1) dpan (w) — {Tk}MA(t)dz/n()\)‘
< Z]/m} 27") duy (\) — {Tk}MA(t)dyn(A)’
<

27" Z vn({ri}) = 27" (I,) = 27771,
k=1

and inequality (5) is proved.
Next, for any s € (0,1) and n,j € N we set

si—lg—n

= [, iy g

Then, by inequality (5), we have

i[aj,n]M(sjz—"t) -2 <t < i[aj,n]M(sj—lz—"t) + M(t)27" /(1 —s)+27",

Jj=1 Jj=1

where by [z] we denote the integer part of a real number z. Choosing now k, such that

o0

Z [aj JM(s77P27™) < 27™,
j=kn+1
as M(t) < M(1) =1, we get
Fo(st)—27"" <P < F,(t) + 27" /(1 —s) + 27" 0<t <1, (8)

where
kn,

[aj’n]M(sj_12_"t). ©))
j=1
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Since the right derivative p of M (see (3)) is a nondecreasing function and 0 < s < 1, from (7) it follows
that

kn
F.(t) — Fu(st) < ajn(M(s77127") — M(s727 "))
j=1
k . . j—lo—n
n 2—nsj—1(1 _ s)p(sj—12—n) s 2
< : dv, (N).

Furthermore, the estimate
2z
F(2x) > / p(s)ds = zp(x), 0<x <1,
combined with the hypothesis that M satisfies the As-condition at zero, shows that

zp(z)
K := sup
o<a<1 M(z)

< o0

Hence,

kn SJ 1 s/ 12 "
Fo(t) = Falst) S K(1-5) > ‘Aﬁ(sj;))/ ) dvp(A).
= sig—n

Moreover, one can readily check that the upper Matuszewska-Orlicz index 3%, is finite (see also §2.1) and,
by its definition, for each g > (j; there is a constant ¢y > 0 such that

M(s727™) > coM(s77127™) s,
As a result, since v, is a probability measure, we conclude

kn Sj—12—n
F(t) — Fy(st) < K(1—s)s 95 Z/ dvn(\) < K(1 — s)s % L. (10)

j:1 jig—n

Let m € N and & > 0 be arbitrary. Choose and fix s € (0,1) so that

K(1—s)s7 9yt < e/(2m). (11)
Then, from (8) and (10) it follows
Fo(t) — % — 9Tt < F(st) — 27" <P, 0 << 1. (12)
Now, taking n € N satisfying the inequality
12:: ralc 2 (13)
from (8) and (12), we obtain . .
Fn(t)fg <tp<Fn(t)+E, 0<t<1. (14)

Therefore, for any ¢; € [0,1], i =1,2,...,m

whence for all ¢ = (c)}_; € R", ¢, 20,

Moreover, since F;, is a convex function, from the latter inequality it follows that

§:F <1+€Hdb)<1

m

Zﬂ«l—m¢)>L

and
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Therefore, by the definition of the norm in an Orlicz sequence space, for every m € N and all ¢ = (¢)}7_; € R”

we have
m
(1= &)lellp < | > e,
p=

where e;, 1 =1,2,..., are the canonical unit vectors in (g, .
Given m € N and ¢ > 0, select s and n to satisfy (11) and (13). For any i = 1,2,...,m and j =1,2,...,k,
denote by A pairwise disjoint subsets of positive integers such that card A%, = [a;,]. Then, the vectors

u; =27 "Zsj ! Z ex, 1=1,2,.

ke Al

in

< (L+¢)llellp, (15)

are copies of an element from [,,. Moreover, by formula (9), we have

m m
H E C;Uj = H E Ci€;
14 14
i=1 M i=1 "

for all ¢; € R. Combining this with (15), we get (1), which completes the proof.

3. Symmetric finite representability of /’ in Orlicz function spaces

Theorem 2

Let M be an Orlicz function satisfying As-condition at infinity. Then ¢P is symmetrically finitely
representable in the Orlicz function space Ly if and only if p € [a37, 55%7], i.e., F(Lum) = [a57, B3]

Proof.

As in the sequence case, we need only to prove the embedding [a$7, 8%7] C F(Lar). More precisely, we
have to check that for every p € [a57,85%7), m € N and each € > 0 there exist equimeasurable and disjointly
supported functions ug, k=1,2,...,m, satisfying for all ¢ = (cx)j~; € R™ the inequality:

E CrUk

k=

< (@+e)elp (16)
Ly

(1 +e) el <

First, t? € C37 C C[0,1] and then the same reasoning as in the proof of Theorem 1 shows that and that
for every n € N there is a probabilistic measure v,, on [2™,00) such that for all ¢ € [0,1]

(oo}
’tp - L. x(():\t)) dyn()\)‘ <2™™
For any s > 1 and n,j € N we define _
o = /m" dpin(N)
’ sj—12n M()\)

Then, by the preceding inequality,
D anM(s772M) = 27" <P <Yy M(s727) + 277,
; =
Next, as M satisfies the As-condition at infinity, we have
M(s72") < (1427 M (s7712™t)
for all 7 € N and ¢ € [0,1] whenever s is sufficiently close to 1. Fixing such a s, we get
D ajaM(sTImM) 27 < P < Z 1427 a; M(s7127t) + 27
: =

Combining this inequality with the estimate
o0
27" a;  M(s7T2M) <27 427 <27 0,

we deduce

Zaij(sj_lT‘t) -2 <P < Zaj’nM(sjAQ"t) + 272, (17)
. =
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On the other hand, since M(u) > u for all u > 1, we have

2 "o
. = —n—j+1
jn < M(2rsi 1 <27"s ,

which implies that

Let

oo o0 s

Y aja <2y s =gt
- - s—1
Jj=1 Jj=1

m € N and € > 0 be arbitrary. Fix n so that

2-ntl 1
?13 < E and 2_"+2m <eE. (18)

The first of the inequalities (18) allows us to take pairwise disjoint sets E; cl0,1], jeN, i=1,2,...,m,
with m(E}) = a;,. Then, the functions

o]
U; = E 2"y i
J

J=1

are equimeasurable and disjointly supported on [0,1]. Moreover, for all ¢; € R

/0 (| ;ciui(t)D dt =35 M@ s eil)ag 0

i=1 j=1

Therefore, by (17) and the second inequality in (18), we get

i lei|P — e < /01 M(‘ ici“i(t)b dt < i lei|P + €.
i=1 i=1 i=1

Repeating further the arguments from the end of the proof of Theorem 1, we come to (16) and so complete
the proof.
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