

Scientific article

DOI: 10.18287/2541-7525-2020-26-4-15-24

Submited: 14.10.2020 Revised: 16.11.2020 Accepted: 25.11.2020

S.V. Astashkin

Samara National Research University, Samara, Russian Federation E-mail: astash56@mail.ru. ORCID: https://orcid.org/0000-0002-8239-5661

SYMMETRIC FINITE REPRESENTABILITY OF ℓ^p IN ORLICZ SPACES¹

ABSTRACT

It is well known that a Banach space need not contain any subspace isomorphic to a space ℓ^p $(1 \le p < \infty)$ or c^0 (it was shown by Tsirel'son in 1974). At the same time, by the famous Krivine's theorem, every Banach space X always contains at least one of these spaces locally, i.e., there exist finite-dimensional subspaces of X of arbitrarily large dimension n which are isomorphic (uniformly) to ℓ_p^n for some $1 \le p < \infty$ or c_0^n . In this case one says that ℓ^p (resp. c^0) is finitely representable in X. The main purpose of this paper is to give a characterization (with a complete proof) of the set of p such that ℓ^p is symmetrically finitely representable in a separable Orlicz space.

Key words: ℓ^p -space; finite representability of ℓ^p -spaces; symmetric finite representability of ℓ^p -spaces; Orlicz function space; Orlicz sequence space; Matuszewska-Orlicz indices.

Citation. Astashkin S.V. Symmetric finite representability of ℓ^p in Orlicz spaces. Vestnik Samarskogo universiteta. Estestvennonauchnaia seriia = Vestnik of Samara University. Natural Science Series, 2020, vol. 26, no. 4, pp. 15–24. DOI: http://doi.org/10.18287/2541-7525-2020-26-4-15-24.

Information about the conflict of interests: author and reviewers declare no conflict of interests.

© Astashkin S.V., 2020

Astashkin Sergey Vladimirovich — Doctor of Physical and Mathematical Sciences, professor, head of the Department of Functional Analysis and Function Theory, Samara National Research University, 34, Moskovskoye shosse, 443086, Russian Federation.

Introduction

While a Banach space X need not contain any subspace isomorphic to a space ℓ^p $(1 \le p < \infty)$ or c^0 (as was shown by Tsirel'son in [1]), it will always contain at least one of these spaces *locally*. This means that there exist finite-dimensional subsets of X of arbitrarily large dimension n which are isomorphic (uniformly) to ℓ_p^n for some $1 \le p < \infty$ or c_0^n . This fact is the content of the famous result proved by Krivine in [2] (see also [3]). To state it we need some definitions.

Suppose X is a Banach space, $1 \le p \le \infty$, and $\{z_i\}_{i=1}^{\infty}$ is a bounded sequence in X. The space ℓ^p is said to be block finitely representable in $\{z_i\}_{i=1}^{\infty}$ if for every $n \in \mathbb{N}$ and $\varepsilon > 0$ there exist $0 = m_0 < m_1 < \ldots < m_n$ and $\alpha_i \in \mathbb{R}$ such that the vectors $u_k = \sum_{i=m_{k-1}+1}^{m_k} \alpha_i z_i$, $k = 1, 2, \ldots, n$, satisfy the inequality

$$(1+\varepsilon)^{-1} ||a||_p \le \left\| \sum_{k=1}^n a_k u_k \right\|_X \le (1+\varepsilon) ||a||_p$$

for arbitrary $a = (a_k)_{k=1}^n \in \mathbb{R}^n$. In what follows,

$$||a||_p := \left(\sum_{k=1}^n |a_k|^p\right)^{1/p} \text{ if } p < \infty, \text{ and } ||a||_\infty := \max_{k=1,2,\dots,n} |a_k|$$

The space ℓ^p , $1 \leq p \leq \infty$, is said to be *finitely representable* in X if for every $n \in \mathbb{N}$ and $\varepsilon > 0$ there exist $x_1, x_2, \ldots, x_n \in X$ such that for any $a = (a_k)_{k=1}^n \in \mathbb{R}^n$

$$(1+\varepsilon)^{-1}||a||_p \leqslant \left\| \sum_{k=1}^n a_k x_k \right\|_X \leqslant (1+\varepsilon)||a||_p$$

¹The work was completed as a part of the implementation of the development program of the Scientific and Educational Mathematical Center the Volga Federal District, agreement no. 075-02-2021-1393.

(alternatively, in the case $p = \infty$, one might say that c^0 is finitely representable in X).

Clearly, if ℓ^p is block finitely representable in some sequence $\{z_i\}_{i=1}^{\infty} \subset X$, then ℓ^p is finitely representable in X. Therefore, the following famous result proved by Krivine in [2] (see also [3] and [4, Theorem 11.3.9]) implies the finite representability of ℓ^p for some $1 \leq p \leq \infty$ in any Banach space.

Theorem (Krivine)

Let $\{z_i\}_{i=1}^{\infty}$ be an arbitrary normalized sequence in a Banach space X such that the vectors z_i do not form a relatively compact set. Then ℓ^p is block finitely representable in $\{z_i\}_{i=1}^{\infty}$ for some $p \in [1, \infty]$.

Here, we consider both Orlicz sequence and function spaces (see the next section for the definition) and in the separable case we give a characterization of the set of p such that ℓ^p is symmetrically finitely representable in such a space. To introduce the notion of symmetric finite representability, we need some more definitions.

A sequence $y = (y_k)_{k=1}^{\infty}$ will be called a *copy* of a sequence $x = (x_k)_{k=1}^{\infty}$ if x and y have the same entries, that is, there is a permutation π of the set of positive integers such that $y_{\pi(k)} = x_k$ for all $k = 1, 2, \ldots$

Given a measurable function x(t) on [0,1], we set

$$n_x(\tau) := m(\{t \in [0, \alpha) : |x(t)| > \tau\}), \ \tau > 0.$$

Here and in the sequel, m denotes the Lebesgue measure. Functions x(t) and y(t) are called equimeasurable if $n_x(\tau) = n_y(\tau)$ for each $\tau > 0$.

Let X be a symmetric sequence space (see e.g. [5]), $1 \le p \le \infty$. We say that ℓ^p is symmetrically finitely representable in X if for every $n \in \mathbb{N}$ and each $\varepsilon > 0$ there exists an element $x_0 \in X$ such that for its disjoint copies x_k , $k = 1, 2, \ldots, n$, and for every $(a_k)_{k=1}^n \in \mathbb{R}^n$ we have

$$(1+\varepsilon)^{-1} ||a||_p \le \left\| \sum_{k=1}^n a_k x_k \right\|_X \le (1+\varepsilon) ||a||_p$$

Similar notion will be defined also in the function case. Let X be a symmetric function space on [0,1] [5]. The space ℓ^p is symmetrically finitely representable in X if for every $n \in \mathbb{N}$ and $\varepsilon > 0$ there exist equimeasurable and disjointly supported on [0,1] functions $u_i(t)$, i = 1, 2, ..., n, such that for all $(a_k)_{k=1}^n \in \mathbb{R}^n$

$$(1-\varepsilon)\|a\|_p \leqslant \left\| \sum_{i=1}^n a_i u_i \right\|_X \leqslant (1+\varepsilon)\|a\|_p$$

The set of all $p \in [1, \infty]$ such that ℓ^p is symmetrically finitely representable in X (in both sequence and function cases) we will denote by $\mathcal{F}(X)$.

From the definition² of the Matuszewska-Orlicz indices α_N^0 and β_N^0 (resp. α_N^∞ and β_N^∞) of an Orlicz sequence space ℓ_N (resp. an Orlicz function space L_N) it follows that $\mathcal{F}(X) \subset [\alpha_N^0, \beta_N^0]$ (resp. $\mathcal{F}(X) \subset [\alpha_N^\infty, \beta_N^\infty]$). The main purpose of this paper is to give a detailed proof of the opposite embedding for both Orlicz sequence and function spaces. To this end, following the idea mentioned in [6, p. 140–141] we will make use of the proof of Theorem 4.a.9 from [7].

Similar problems for Orlicz function spaces (and more generally symmetric spaces) on $(0, \infty)$ were considered in the paper [8].

1. Preliminaries

1.1. Orlicz sequence spaces

A detailed information related to Orlicz sequence and function spaces see in monographs [9-11].

The Orlicz sequence spaces are a natural generalization of the ℓ^p -spaces, $1 \leqslant p \leqslant \infty$, which equipped with the usual norms

$$||a||_{\ell^p} := \begin{cases} \left(\sum_{k=1}^{\infty} |a_k|^p\right)^{1/p}, & 1 \leq p < \infty \\ \sup_{k=1,2,\dots} |a_k|, & p = \infty. \end{cases}$$

Let N be an Orlicz function, that is, an increasing convex continuous function on $[0, \infty)$ such that N(0) = 0 and $\lim_{t\to\infty} N(t) = \infty$. The Orlicz sequence space ℓ_N consists of all sequences $a = (a_k)_{k=1}^{\infty}$, for which the following (Luxemburg) norm

$$||a||_{\ell_N} := \inf \left\{ u > 0 : \sum_{k=1}^{\infty} N\left(\frac{|a_k|}{u}\right) \leqslant 1 \right\}$$

²See the next section.

is finite. Without loss of generality, we will assume that N(1) = 1. In particular, if $N(t) = t^p$, we get the ℓ^p -space, $1 \leq p < \infty$.

Recall that the Matuszewska-Orlicz indices (at zero) α_N^0 and β_N^0 of an Orlicz function N are defined by

$$\alpha_N^0 := \sup \big\{p : \sup_{x,y \leqslant 1} \frac{N(x)y^p}{N(xy)} < \infty \big\}, \qquad \beta_N^0 := \inf \big\{p : \inf_{x,y \leqslant 1} \frac{N(x)y^p}{N(xy)} > 0 \big\}.$$

It can be easily checked that $1 \leqslant \alpha_N^0 \leqslant \beta_N^0 \leqslant \infty$. It is well known also that an Orlicz sequence space ℓ_N is separable if and only if $\beta_N^0 < \infty$, or equivalently, if the function N satisfies the Δ_2 -condition at zero, i.e.,

$$\limsup_{u \to 0} \frac{N(2u)}{N(u)} < \infty.$$

The subset h_N of an Orlicz sequence space ℓ_N consists of all $(a_k)_{k=1}^{\infty} \in \ell_N$ such that

$$\sum_{k=1}^{\infty} N\left(\frac{|a_k|}{u}\right) < \infty \text{ for each } u > 0.$$

One can easily check (see also [7, Proposition 4.a.2]) that h_N is a separable closed subspace of ℓ_N and the canonical unit vectors $e_n=(e_n^i)$ such that $e_n^n=1$ and $e_n^i=0$ if $i\neq n,\ n=1,2,\ldots$, form a symmetric basis of the space h_N . Recall that a basis $\{x_n\}_{n=1}^{\infty}$ of a Banach space X is said to be *symmetric* if there exists C>0 such that for any permutation π of the set of positive integers and all $a_n\in\mathbb{R}$ we have

$$C^{-1} \left\| \sum_{n=1}^{\infty} a_n x_n \right\|_X \le \left\| \sum_{n=1}^{\infty} a_n x_{\pi(n)} \right\|_X \le C \left\| \sum_{n=1}^{\infty} a_n x_n \right\|_X.$$

Observe that the definition of an Orlicz sequence space ℓ_N is determined (up to equivalence of norms) by the behaviour of the function N near zero. More precisely, the following conditions are equivalent: 1) $\ell_N = \ell_M$ (with equivalence of norms); 2) the canonical vector bases of the spaces h_N in h_M are equivalent; 3) there are constants C > 0, c > 0 and $t_0 > 0$ such that for all $0 \le t \le t_0$ it holds

$$cN(C^{-1}t)\leqslant M(t)\leqslant c^{-1}N(Ct)$$

(see e.g. [7, Proposition 4.a.5] or [11, Theorem 3.4]). In particular, if N is a degenerate Orlicz function, i. e., for some $t_0 > 0$ we have N(t) = 0 if $0 \le t \le t_0$, then $\ell_N = \ell_\infty$ (with equivalence of norms).

Given Orlicz function N, we define the following subsets of the space $C[0,\frac{1}{2}]$:

$$E_{N,a}^0 := \overline{\left\{ \frac{N(xy)}{N(y)} : 0 < y < a \right\}}, \quad E_N^0 := \bigcap_{0 < a < 1} E_{N,a}^0$$

and

$$C_{N,a}^0 := \overline{convE_{N,a}^0}, \quad C_N^0 := \bigcap_{0 < a < 1} C_{N,a}^0,$$

where 0 < a < 1 and the closure is taken in the norm topology of $C[0, \frac{1}{2}]$. All these sets are non-void norm compact subsets of the space $C[0, \frac{1}{2}]$ [7, Lemma 4.a.6]. It is well known that they determine to a large extent the structure of disjoint sequences of Orlicz sequence spaces (see [7, § 4.a] and [12]). Moreover, if $1 \le p < \infty$, then $t^p \in C_N^0$ if and only if $p \in [\alpha_N^0, \beta_N^0]$ [7, Theorem 4.a.9].

In the case when an Orlicz function N satisfies the Δ_2 -condition at zero, the sets $E_{N,a}^0$, E_N^0 , $C_{N,a}^0$ and C_N^0 can be considered as subsets of the space C[0,1] (see the remark after Lemma 4.a.6 in [7]).

1.2. Orlicz function spaces

Let N be an Orlicz function such that N(1) = 1. Denote by L_N the Orlicz space on [0,1] endowed with the Luxemburg norm

$$||x||_{L_N} := \inf\{u > 0 : \int_0^1 N\left(\frac{|x(t)|}{u}\right) dt \leqslant 1\}.$$

In particular, if $N(t) = t^p$, $1 \le p < \infty$, we obtain the space $L_p = L_p[0,1]$ with the usual norm.

The Matuszewska-Orlicz indices α_N^{∞} and β_N^{∞} (at infinity) of an Orlicz function N are defined by the formulae

$$\alpha_N^\infty = \sup\big\{p: \sup_{x,y\geqslant 1} \frac{N(x)y^p}{N(xy)} < \infty\big\}, \qquad \beta_N^\infty = \inf\big\{p: \inf_{x,y\geqslant 1} \frac{N(x)y^p}{N(xy)} > 0\big\}.$$

Again $1 \leqslant \alpha_N^{\infty} \leqslant \beta_N^{\infty} \leqslant \infty$. As in the case of sequence spaces, an Orlicz space L_N is separable if and only if $\beta_N^{\infty} < \infty$, or equivalently, if the function N satisfies the Δ_2 -condition at infinity, i.e.,

$$\limsup_{u \to \infty} \frac{N(2u)}{N(u)} < \infty.$$

In contrast to the sequence case, the definition of an Orlicz function space L_N on [0,1] is determined (up to equivalence of norms) by the behaviour of the function N(t) for large values of t.

For every Orlicz function N we define the following subsets of the space $C[0,\frac{1}{2}]$:

$$E_{N,A}^{\infty} := \overline{\left\{\frac{N(xy)}{N(y)} : y > A\right\}}, E_N^{\infty} = \bigcap_{A>0} E_{N,A}^{\infty}, \quad C_N^{\infty} := \overline{conv} E_N^{\infty},$$

where the closure is taken in the norm topology of $C[0, \frac{1}{2}]$. Again all these sets are non-void norm compact subsets of the space $C[0, \frac{1}{2}]$ and they determine largely the structure of disjoint sequences in Orlicz function spaces (see [12, Propositions 3 and 4]). Moreover, if $1 \leq p < \infty$, then $t^p \in C_N^{\infty}$ if and only if $p \in [\alpha_N^{\infty}, \beta_N^{\infty}]$ [12].

Finally, if an Orlicz function N satisfies the Δ_2 -condition at infinity, the sets $E_{N,A}^{\infty}$, E_N^{∞} and C_N^{∞} can be considered as subsets of the space C[0,1].

2. Symmetric finite representability of ℓ^p in Orlicz sequence spaces

Theorem 1

Let M be an Orlicz function satisfying the Δ_2 -condition at zero. Then ℓ^p is symmetrically finitely representable in the Orlicz sequence space ℓ_M if and only if $p \in [\alpha_M^0, \beta_M^0]$, i.e., $\mathcal{F}(\ell_M) = [\alpha_M^0, \beta_M^0]$.

Proof.

As was observed in § 1, we always have $\mathcal{F}(\ell_M) \subset [\alpha_M^0, \beta_M^0]$. Therefore, it suffices to prove only the opposite embedding. In other words, we need to show that for every $p \in [\alpha_M^0, \beta_M^0]$, $m \in \mathbb{N}$ and each $\varepsilon > 0$ there exists an element $x_0 \in \ell_M$ such that for its disjoint copies x_k , k = 1, 2, ..., m, and for every $c = (c_k)_{k=1}^m \in \mathbb{R}^n$ we have

$$(1+\varepsilon)^{-1} \|c\|_p \le \left\| \sum_{k=1}^m c_k x_k \right\|_{\ell_M} \le (1+\varepsilon) \|c\|_p.$$
 (1)

According to the proof of Theorem 4.a.9 in [7] and a comment followed this proof on p. 144, $t^p \in C_M^0$ (see also § 2.1). Since M satisfies the Δ_2 -condition at zero, the set C_M^0 may be considered as a subset of the space C[0,1] (see the remark after Lemma 4.a.6 in [7] or again § 2.1). Therefore, since $C_M^0 := \bigcap_{0 < a < 1} C_{M,a}^0$, we conclude that $t^p \in C_{M,2^{-n}}^0$ for each $n \in \mathbb{N}$.

Note that the mapping

$$\lambda \mapsto M_{\lambda}(t) := M(\lambda t)/M(\lambda) \tag{2}$$

is continuous from $I_n := (0, 2^{-n}]$ into the subset $E_{M,2^{-n}}^0$ of C[0,1]. Indeed, as it is well known (see e.g. [9, Theorem 1.1]),

$$M(t) = \int_0^t \rho(s) \, ds,\tag{3}$$

where ρ is a nondecreasing right-continuous function.

Therefore, for arbitrary $\lambda_2 > \lambda_1 > 0$ and all $0 \le t \le 1$ we have

$$|M_{\lambda_{2}}(t) - M_{\lambda_{1}}(t)| = \frac{|M(\lambda_{1})M(\lambda_{2}t) - M(\lambda_{2})M(\lambda_{1}t)|}{M(\lambda_{1})M(\lambda_{2})}$$

$$\leqslant \frac{1}{M(\lambda_{2})}(M(\lambda_{2}t) - M(\lambda_{1}t) + M(\lambda_{2}) - M(\lambda_{1}))$$

$$\leqslant \frac{1}{M(\lambda_{2})} \left(\int_{\lambda_{1}t}^{\lambda_{2}t} \rho(s) \, ds + \int_{\lambda_{1}}^{\lambda_{2}} \rho(s) \, ds \right)$$

$$\leqslant \frac{2\rho(\lambda_{2})}{M(\lambda_{2})} (\lambda_{2} - \lambda_{1}).$$

Thus, mapping (2) may be extended uniquely to a map $\omega \mapsto M_{\omega}$ from the Stone-Čech compactification βI_n of I_n onto the set $E^0_{M,2^{-n-1}}$. Since $t^p \in C^0_{M,2^{-n}}$ and the extreme points of $C^0_{M,2^{-n}}$ are contained in the

compact set $E_{M,2^{-n}}^0$, by the Krein-Milman theorem (see e.g. [13, Theorem 3.28]), there exists a probability measure μ_n on the set βI_n such that

$$t^{p} = \int_{\beta I_{n}} M_{\omega}(t) d\mu_{n}(\omega), \quad 0 \leqslant t \leqslant 1.$$

$$(4)$$

Let us show that

for some probability measure ν_n on I_n we have

$$\left| t^p - \int_0^{2^{-n}} M_{\lambda}(t) \, d\nu_n(\lambda) \right| < 2^{-n}, \ \ 0 \leqslant t \leqslant 1.$$
 (5)

First, the fact that the set $\mathbb{Q}_n := \mathbb{Q} \cap I_n$ (\mathbb{Q} is the set of rationals) is dense in βI_n implies that the set $\{M_r, r \in \mathbb{Q}_n\}$ is dense in the subset $\{M_\omega, \omega \in \beta I_n\}$ of C[0,1]. Consequently, putting $\mathbb{Q}_n = \{r_k\}_{k=1}^{\infty}$ and

$$E_k := \{ \omega \in \beta I_n : |M_{\omega}(t) - M_{r_k}(t)| < 2^{-n} \text{ for all } 0 \le t \le 1 \},$$
(6)

we have $\beta I_n = \bigcup_{k=1}^{\infty} E_k$. Now, if $F_m := E_m \setminus (\bigcup_{k=1}^{m-1} E_k)$, m = 1, 2, ..., then F_m are pairwise disjoint and $\beta I_n = \bigcup_{m=1}^{\infty} F_m$. Define the measure ν_n on σ -algebra of Borel subsets U of the interval I_n by

$$\nu_n(U) := \sum_{\{k: r_k \in U\}} \mu_n(F_k),$$

where μ_n is the probability measure from (4). Since

$$\nu_n(I_n) = \sum_{k=1}^{\infty} \mu_n(F_k) = \mu_n(\beta I_n) = 1,$$

then ν_n is a probability measure on I_n . Moreover, by (4) and (6), for all $0 \le t \le 1$

$$\begin{split} \left| t^p - \int_0^{2^{-n}} M_{\lambda}(t) \, d\nu_n(\lambda) \right| &= \left| \int_{\beta I_n} M_{\omega}(t) \, d\mu_n(\omega) - \int_0^{2^{-n}} M_{\lambda}(t) \, d\nu_n(\lambda) \right| \\ &\leqslant \sum_{k=1}^{\infty} \left| \int_{F_k} M_{\omega}(t) \, d\mu_n(\omega) - \int_{\{r_k\}} M_{\lambda}(t) \, d\nu_n(\lambda) \right| \\ &\leqslant \sum_{k=1}^{\infty} \left| \int_{\{r_k\}} (M_{\lambda}(t) + 2^{-n}) \, d\nu_n(\lambda) - \int_{\{r_k\}} M_{\lambda}(t) \, d\nu_n(\lambda) \right| \\ &\leqslant 2^{-n} \sum_{k=1}^{\infty} \nu_n(\{r_k\}) = 2^{-n} \nu_n(I_n) = 2^{-n-1}, \end{split}$$

and inequality (5) is proved.

Next, for any $s \in (0,1)$ and $n, j \in \mathbb{N}$ we set

$$a_{j,n} := \int_{s^{j}2^{-n}}^{s^{j-1}2^{-n}} \frac{d\nu_n(\lambda)}{M(\lambda)}.$$
 (7)

Then, by inequality (5), we have

$$\sum_{j=1}^{\infty} [a_{j,n}] M(s^j 2^{-n} t) - 2^{-n} < t^p < \sum_{j=1}^{\infty} [a_{j,n}] M(s^{j-1} 2^{-n} t) + M(t) 2^{-n} / (1-s) + 2^{-n},$$

where by [z] we denote the integer part of a real number z. Choosing now k_n such that

$$\sum_{j=k_n+1}^{\infty} [a_{j,n}]M(s^{j-1}2^{-n}) < 2^{-n},$$

as $M(t) \leq M(1) = 1$, we get

$$F_n(st) - 2^{-n+1} < t^p < F_n(t) + 2^{-n}/(1-s) + 2^{-n+1}, \ 0 \le t \le 1,$$
 (8)

where

$$F_n(t) := \sum_{j=1}^{k_n} [a_{j,n}] M(s^{j-1} 2^{-n} t). \tag{9}$$

Since the right derivative ρ of M (see (3)) is a nondecreasing function and 0 < s < 1, from (7) it follows that

$$F_n(t) - F_n(st) \leqslant \sum_{j=1}^{k_n} a_{j,n} (M(s^{j-1}2^{-n}t) - M(s^j2^{-n}t))$$

$$\leqslant \sum_{j=1}^{k_n} \frac{2^{-n}s^{j-1}(1-s)\rho(s^{j-1}2^{-n})}{M(s^j2^{-n})} \int_{s^j2^{-n}}^{s^{j-1}2^{-n}} d\nu_n(\lambda).$$

Furthermore, the estimate

$$F(2x) \geqslant \int_{x}^{2x} \rho(s) ds \geqslant x\rho(x), \quad 0 \leqslant x \leqslant 1,$$

combined with the hypothesis that M satisfies the Δ_2 -condition at zero, shows that

$$K := \sup_{0 < x \le 1} \frac{x \rho(x)}{M(x)} < \infty.$$

Hence,

$$F_n(t) - F_n(st) \le K(1-s) \sum_{j=1}^{k_n} \frac{M(s^{j-1}2^{-n})}{M(s^j2^{-n})} \int_{s^j2^{-n}}^{s^{j-1}2^{-n}} d\nu_n(\lambda).$$

Moreover, one can readily check that the upper Matuszewska-Orlicz index β_M^0 is finite (see also § 2.1) and, by its definition, for each $q > \beta_M$ there is a constant $c_0 > 0$ such that

$$M(s^j 2^{-n}) \geqslant c_0 M(s^{j-1} 2^{-n}) s^q$$
.

As a result, since ν_n is a probability measure, we conclude

$$F_n(t) - F_n(st) \leqslant K(1-s)s^{-q}c_0^{-1} \sum_{i=1}^{k_n} \int_{s^{j}2^{-n}}^{s^{j-1}2^{-n}} d\nu_n(\lambda) \leqslant K(1-s)s^{-q}c_0^{-1}.$$
(10)

Let $m \in \mathbb{N}$ and $\varepsilon > 0$ be arbitrary. Choose and fix $s \in (0,1)$ so that

$$K(1-s)s^{-q}c_0^{-1} < \varepsilon/(2m).$$
 (11)

Then, from (8) and (10) it follows

$$F_n(t) - \frac{\varepsilon}{2m} - 2^{-n+1} < F_n(st) - 2^{-n+1} < t^p, \quad 0 \le t \le 1.$$
 (12)

Now, taking $n \in \mathbb{N}$ satisfying the inequality

$$\frac{2^{-n}}{1-s} + 2^{-n+1} < \frac{\varepsilon}{2m},\tag{13}$$

from (8) and (12), we obtain

$$F_n(t) - \frac{\varepsilon}{m} < t^p < F_n(t) + \frac{\varepsilon}{m}, \quad 0 \le t \le 1.$$
 (14)

Therefore, for any $c_i \in [0,1], i = 1, 2, \ldots, m$

$$\sum_{i=1}^{m} c_i^p - \varepsilon < \sum_{i=1}^{m} F_n(c_i) < \sum_{i=1}^{m} c_i^p + \varepsilon,$$

whence for all $c = (c_k)_{k=1}^n \in \mathbb{R}^n$, $c_k \ge 0$,

$$1 - \varepsilon < \sum_{i=1}^{m} F_n \left(\frac{c_i}{\|c\|_p} \right) < 1 + \varepsilon.$$

Moreover, since F_n is a convex function, from the latter inequality it follows that

$$\sum_{i=1}^{m} F_n \left(\frac{c_i}{(1+\varepsilon) \|c\|_p} \right) \leqslant 1$$

and

$$\sum_{i=1}^{m} F_n\left(\frac{c_i}{(1-\varepsilon)\|c\|_p}\right) > 1.$$

Therefore, by the definition of the norm in an Orlicz sequence space, for every $m \in \mathbb{N}$ and all $c = (c_k)_{k=1}^n \in \mathbb{R}^n$ we have

$$(1 - \varepsilon) \|c\|_p \le \left\| \sum_{i=1}^m c_i e_i \right\|_{\ell_{F_n}} \le (1 + \varepsilon) \|c\|_p, \tag{15}$$

where e_i , i = 1, 2, ..., are the canonical unit vectors in ℓ_{F_n} .

Given $m \in \mathbb{N}$ and $\varepsilon > 0$, select s and n to satisfy (11) and (13). For any i = 1, 2, ..., m and $j = 1, 2, ..., k_n$ denote by $A_{j,n}^i$ pairwise disjoint subsets of positive integers such that card $A_{j,n}^i = [a_{j,n}]$. Then, the vectors

$$u_i := 2^{-n} \sum_{j=1}^{k_n} s^{j-1} \sum_{k \in A_{i,n}^i} e_k, \quad i = 1, 2, \dots, m,$$

are copies of an element from l_m . Moreover, by formula (9), we have

$$\left\| \sum_{i=1}^{m} c_{i} u_{i} \right\|_{\ell_{M}} = \left\| \sum_{i=1}^{m} c_{i} e_{i} \right\|_{\ell_{F_{n}}}$$

for all $c_i \in \mathbb{R}$. Combining this with (15), we get (1), which completes the proof.

3. Symmetric finite representability of ℓ^p in Orlicz function spaces

Theorem 2

Let M be an Orlicz function satisfying Δ_2 -condition at infinity. Then ℓ^p is symmetrically finitely representable in the Orlicz function space L_M if and only if $p \in [\alpha_M^{\infty}, \beta_M^{\infty}]$, i.e., $\mathcal{F}(L_M) = [\alpha_M^{\infty}, \beta_M^{\infty}]$.

Proof.

As in the sequence case, we need only to prove the embedding $[\alpha_M^{\infty}, \beta_M^{\infty}] \subset \mathcal{F}(L_M)$. More precisely, we have to check that for every $p \in [\alpha_M^{\infty}, \beta_M^{\infty}]$, $m \in \mathbb{N}$ and each $\varepsilon > 0$ there exist equimeasurable and disjointly supported functions u_k , k = 1, 2, ..., m, satisfying for all $c = (c_k)_{k=1}^m \in \mathbb{R}^m$ the inequality:

$$(1+\varepsilon)^{-1} \|c\|_p \leqslant \left\| \sum_{k=1}^m c_k u_k \right\|_{L_M} \leqslant (1+\varepsilon) \|c\|_p$$
 (16)

First, $t^p \in C_M^\infty \subset C[0,1]$ and then the same reasoning as in the proof of Theorem 1 shows that and that for every $n \in \mathbb{N}$ there is a probabilistic measure ν_n on $[2^n, \infty)$ such that for all $t \in [0,1]$

$$\left|t^p - \int_{2^n}^{\infty} \frac{M(\lambda t)}{M(\lambda)} d\nu_n(\lambda)\right| < 2^{-n}.$$

For any s > 1 and $n, j \in \mathbb{N}$ we define

$$a_{j,n} := \int_{s^{j-1}2^n}^{s^j 2^n} \frac{d\mu_n(\lambda)}{M(\lambda)}.$$

Then, by the preceding inequality,

$$\sum_{i=1}^{\infty} a_{j,n} M(s^{j-1}2^n t) - 2^{-n} < t^p < \sum_{i=1}^{\infty} a_{j,n} M(s^j 2^n t) + 2^{-n}.$$

Next, as M satisfies the Δ_2 -condition at infinity, we have

$$M(s^j 2^n t) \le (1 + 2^{-n}) M(s^{j-1} 2^n t)$$

for all $j \in \mathbb{N}$ and $t \in [0,1]$ whenever s is sufficiently close to 1. Fixing such a s, we get

$$\sum_{j=1}^{\infty} a_{j,n} M(s^{j-1}2^n t) - 2^{-n} < t^p < \sum_{j=1}^{\infty} (1 + 2^{-n}) a_{j,n} M(s^{j-1}2^n t) + 2^{-n}.$$

Combining this inequality with the estimate

$$2^{-n} \sum_{j=1}^{\infty} a_{j,n} M(s^{j-1} 2^n t) < 2^{-2n} + 2^{-n} t^p < 2^{-n+1}, \ 0 \le t \le 1,$$

we deduce

$$\sum_{j=1}^{\infty} a_{j,n} M(s^{j-1} 2^n t) - 2^{-n} < t^p < \sum_{j=1}^{\infty} a_{j,n} M(s^{j-1} 2^n t) + 2^{-n+2}.$$
(17)

On the other hand, since $M(u) \ge u$ for all $u \ge 1$, we have

$$a_{j,n} \leqslant \frac{2}{M(2^n s^{j-1})} \leqslant 2^{-n} s^{-j+1},$$

which implies that

$$\sum_{j=1}^{\infty} a_{j,n} \leqslant 2^{-n} \sum_{j=1}^{\infty} s^{-j+1} = 2^{-n+1} \cdot \frac{s}{s-1}.$$

Let $m \in \mathbb{N}$ and $\varepsilon > 0$ be arbitrary. Fix n so that

$$\frac{2^{-n+1}s}{s-1} < \frac{1}{m} \text{ and } 2^{-n+2}m < \varepsilon.$$
 (18)

The first of the inequalities (18) allows us to take pairwise disjoint sets $E_j^i \subset [0,1], j \in \mathbb{N}, i = 1, 2, ..., m$, with $m(E_j^i) = a_{j,n}$. Then, the functions

$$u_i := \sum_{j=1}^{\infty} 2^n s^{j-1} \chi_{E_j^i}$$

are equimeasurable and disjointly supported on [0,1]. Moreover, for all $c_i \in \mathbb{R}$

$$\int_0^1 M\left(\left|\sum_{i=1}^m c_i u_i(t)\right|\right) dt = \sum_{i=1}^m \sum_{j=1}^\infty M(2^n s^{j-1}|c_i|) a_{j,n}.$$

Therefore, by (17) and the second inequality in (18), we get

$$\sum_{i=1}^{m} |c_i|^p - \varepsilon < \int_0^1 M\left(\left|\sum_{i=1}^{m} c_i u_i(t)\right|\right) dt < \sum_{i=1}^{m} |c_i|^p + \varepsilon.$$

Repeating further the arguments from the end of the proof of Theorem 1, we come to (16) and so complete the proof.

References

- [1] Tsirel'son B.S. Not every Banach space contains an imbedding off p or c0. Functional Analysis and Its Applications, 1974, vol. 8, no. 2, pp. 138–141. DOI: https://doi.org/10.1007/BF01078599. (English; Russian original)
- [2] Krivine J.L. Sous-espaces de dimension finie des espaces de Banach réticulés. Annals of Mathematics, 1976, vol. 104, no. 2, pp. 1–29. Available at: https://www.irif.fr/krivine/articles/Espaces reticules.pdf.
- [3] Rosenthal H.P. On a theorem of J.L. Krivine concerning block finite representability of ℓ^p in general Banach spaces. *Journal of Functional Analysis*, 1978, vol. 28, pp. 197–225. DOI: http://dx.doi.org/10.1016/0022-1236(78)90086-1.
- [4] Albiac F., Kalton N.J. Topics in Banach Space Theory. Graduate Texts in Mathematics 233. New York: Springer-Verlag, 2006. 373 p. DOI: http://dx.doi.org/10.1007/0-387-28142-8.
- [5] Krein S.G., Petunin Yu.I., Semenov E.M. Interpolation of linear operators. Moscow: Nauka, 1978, 400 p. Available at: https://elibrary.ru/item.asp?id=21722209; https://booksee.org/book/577975. (In Russ.)
- [6] Lindenstrauss J., Tzafriri L. Classical Banach Spaces, II. Function Spaces. Berlin, Heidelberg, New York: Springer-Verlag, 1979, 243 p. Available at: https://llib.education/book/2307307/8b833b?dsource=recommend.
- [7] Lindenstrauss J., Tzafriri L. Classical Banach Spaces, I. Sequence Spaces. Berlin–New York: Springer-Verlag, 1977. 190 p. Available at: https://llib.education/book/2264754/01841c?dsource=recommend.
- [8] Astashkin S.V. On the finite representability of ℓ^p -spaces in rearrangement invariant spaces. St. Petersburg Math. J., 2012, vol. 23, no. 2, pp. 257–273. DOI: http://doi.org/10.1090/S1061-0022-2012-01196-9. (English; Russian original)
- Krasnoselskii M.A., Rutickii Ya.B. Convex functions and Orlicz spaces. Moscow: Gos. izd. fiz.-mat. lit., 1958,
 p. Available at: https://llib.education/book/2078048/983381?id=2078048&secret=983381. (In Russ.)
- [10] Rao M.M., Ren Z.D. Theory of Orlicz spaces. Monographs and Textbooks in Pure and Applied Mathematics, vol. 146. New York: Marcel Dekker Inc., 1991. 445 p.
- [11] Maligranda L. Orlicz Spaces and Interpolation. Seminars in Mathematics 5. Campinas: University of Campinas, 1989. 206 p.

- [12] Lindenstrauss Y., Tzafriri L. On Orlicz sequence spaces. III. Israel Journal of Mathematics, 1973, vol. 14, pp. 368–389. DOI: https://doi.org/10.1007/BF02771656.
- [13] Rudin W. Functional Analysis. Moscow: Mir, 1975, 443 p. Available at: https://www.nehudlit.ru/books/funktsionalnyy-analiz.html.

Научная статья

DOI: 10.18287/2541-7525-2020-26-4-15-24

УДК 517.982.27

Дата: поступления статьи: 14.10.2020 после рецензирования: 16.11.2020

принятия статьи: 25.11.2020

С.В. Асташкин

Самарский национальный исследовательский университет имени академика С.П. Королева, г. Самара, Российская Федерация E-mail: astash56@mail.ru. ORCID: https://orcid.org/0000-0002-8239-5661

СИММЕТРИЧНАЯ ФИНИТНАЯ ПРЕДСТАВИМОСТЬ ℓ^p В ПРОСТРАНСТВАХ ОРЛИЧА³

АННОТАЦИЯ

Хорошо известно, что банахово пространство может не содержать подпространств, изоморфных хотя бы одному из пространств ℓ^p $(1\leqslant p<\infty)$ или c^0 (это было показано Цирельсоном в 1974 г.). В то же время по известной теореме Кривина каждое банахово пространство X всегда содержит хотя бы одно из этих пространств локально, т. е. существуют конечномерные подпространства в X сколь угодно большой размерности n, изоморфны (равномерно) ℓ^n_p для некоторых $1\leqslant p<\infty$ или c^n_0 . В этом случае говорят, что ℓ^p (соответственно c^0) финитно представимо в X. Основная цель этой статьи — дать характеризацию (с полным доказательством) множества тех p, что ℓ^p симметрично финитно представимо в любом сепарабельном пространстве Орлича.

Ключевые слова: ℓ^p -пространство; финитная представимость ℓ^p -пространств; симметричная финитная представимость ℓ^p -пространств; функциональное пространство Орлича; пространство последовательностей Орлича; индексы Матушевской — Орлича.

Цитирование. Astashkin S.V. Symmetric finite representability of ℓ^p in Orlicz spaces // Вестник Самарского университета. Естественнонаучная серия. 2020. Т. 26, № 4. С. 15–24. DOI: http://doi.org/10.18287/2541-7525-2020-26-4-15-24.

Информация о конфликте интересов: автор и рецензенты заявляют об отсутствии конфликта интересов.

© Асташкин С.В., 2020

Асташкин Сергей Владимирович — доктор физико-математических наук, профессор, заведующий кафедрой функционального анализа и теории функций, Самарский национальный исследовательский университет имени академика С.П. Королева, 443086, Российская Федерация, г. Самара, Московское шоссе, 34.

Литература

- [1] Цирельсон Б.С. Не в любое банахово пространство можно вложить ℓ^p или c^0 // Функц. анал. и его прил. 1974. Т. 8, №2. С. 57–60. URL: http://mi.mathnet.ru/faa2331.
- [2] Krivine J.L. Sous-espaces de dimension finie des espaces de Banach réticulés // Annals of Mathematics. 1976. Vol. 104, \aleph_2 2. P. 1–29. URL: https://www.irif.fr/ krivine/articles/Espaces_reticules.pdf.

³Работа выполнена в рамках внедрения программы развития Научно-образовательного математического центра Приволжского федерального округа, договор № 075-02-2021-1393.

- [3] Rosenthal H.P. On a theorem of J.L. Krivine concerning block finite representability of ℓ^p in general Banach spaces // Journal of Functional Analysis. 1978. Vol. 28. P. 197–225. DOI: http://dx.doi.org/10.1016/0022-1236(78)90086-1.
- [4] Albiac F., Kalton N.J. Topics in Banach Space Theory. Graduate Texts in Mathematics 233. New York: Springer-Verlag, 2006. 373 p. URL: http://dx.doi.org/10.1007/0-387-28142-8.
- [5] Крейн С.Г., Петунин Ю.И., Семенов Е.М. Интерполяция линейных операторов. Москва: Hayka, 1978. 400 с. URL: https://elibrary.ru/item.asp?id=21722209; https://booksee.org/book/577975.
- [6] Lindenstrauss J., Tzafriri L. Classical Banach Spaces, II. Function Spaces. Berlin, Heidelberg, New York: Springer-Verlag, 1979. 243 p. URL: https://llib.education/book/2307307/8b833b?dsource=recommend.
- [7] Lindenstrauss J., Tzafriri L. Classical Banach Spaces, I. Sequence Spaces. Berlin-New York: Springer-Verlag, 1977. 190 p. URL: https://llib.education/book/2264754/01841c?dsource=recommend.
- [8] Асташкин С.В. О финитной представимости ℓ^p -пространств в перестановочно инвариантных пространствах // Алгебра и анализ. 2011. Т. 23, № 2. С. 77–101. URL: http://mi.mathnet.ru/aa1235
- [9] Красносельский М.А., Рутицкий Я.Б. Выпуклые функции и пространства Орлича. Москва: Гос. изд-во физ.-мат. лит., 1958. 271 с. URL: https://llib.education/book/2078048/983381?id=2078048&secret=983381.
- [10] Rao M.M., Ren Z.D. Theory of Orlicz spaces. Monographs and Textbooks in Pure and Applied Mathematics, vol. 146 - Marcel Dekker Inc., New York, 1991. 445 p.
- [11] Maligranda L. Orlicz Spaces and Interpolation. Seminars in Mathematics 5. Campinas: University of Campinas, 1989. 206 p.
- [12] Lindenstrauss Y., Tzafriri L. On Orlicz sequence spaces. III // Israel Journal of Mathematics. 1973. Vol. 14. P. 368–389. DOI: https://doi.org/10.1007/BF02771656.
- [13] Рудин У. Функциональный анализ. Москва: Мир, 1975. 443 с. URL: https://www.nehudlit.ru/books/funktsionalnyy-analiz.html.