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ABSTRACT

The abstract equations containing the operators of the second, third and fourth degree are investigated
in this work.

The necessary conditions for the solvability of the abstract equations, containing the operators of the
second and fourth degree, are proved without using linear independence of the vectors included in these
equations. Previous authors have essentially used the linear independence of the vectors to prove the necessary
solvability condition.

The present paper also gives the correctness criterion for the abstract equation, containing the operators
of the third degree with arbitrary vectors, and its exact solution in terms of these vectors in a Banach space.

The theory presented here, can be useful for investigation of Fredholm integro-differential equations
embodying powers of an ordinary differential operator or a partial differential operator.
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Introduction

Boundary value problems (BVPs) for integro-differential equations (IDEs) with initial and nonlocal
boundary conditions arise in various fields of mechanics, physics, biology, biotechnology, chemical engineering,
medical science, finance and others. (see [1; 3-5; 12; 14|.) Finding an exact solution of BVPs for Fredholm
IDEs is a difficult problem and is given in [2; 6-11; 13; 15-17|. IDEs embodying powers of a differential
operator of the type

Bou = A%u — p®(u) — q®(Au) — r®(A%u) = f,

D(By) = D(A?), (1)
Bsu = A%y — p®(u) — q®(Au) — r®(A%u) — s®(A%u) = |,

D(Bs) = D(A°), (2)
Byu = A*u — p®(u) — q®(Au) — r®(A%u) — s®(Au) — 20 (A*u) = f,

D(By) = D(A). (3)

are solved usually by more simple methods. Such equations are used for solving Fredholm ordinary and partial
IDEs with initial and boundary conditions, when A is a differential operator, functionals ®(u), ®(A*u), i =
=1,2,3,4 are Fredholm integral operators with separable kernels. For example, the problem [13]

2(x) = A fy 2l (y) + 2(ldy ==, 2(0) =1, #(0) =0,

by substitution u(x) = z(z) — 1 is reduced to

W(x) = Ae [ [ (y) +u(y)ldy = (1+ 20z, u(0) =0, w'(0)=0,

which is of the type (1), where

D(A) = {u(z) € C'[0,1] : u(0) = 0}, D(A?) = {u(z) € C2[0,1] : u(0) = «'(0) =0}, p=r=Ar,q =
=0, ®(u)= fol u(y)dy, @(2211) = fol u’ (y)dy.
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The operator Bs with the third degree operator A which we study in (2), has a more complex shape then in
[9]. The main result of this paper is Theorem 1.3. Finally, we give one example of integro-differential equation
demonstrating the power and usefulness of the method presented. By C we denote the set of all complex
numbers and by X,Y the complex Banach spaces. The domain and range of a linear operator P: X — Y
will be designated by D(A) and R(A), respectively. We recall that a linear operator P : X — Y is said
to be injective (or uniquely solvable) if for all uj,us € D(P) such that Pu; = Pug, follows that u; = ug,
alternatively, the operator P is injective if and only if ker P = {0}. A linear operator P: X — Y is called
surjective (or everywhere solvable) if R(P) =Y. The operator P is called bijective if P is both injective
and surjective. Lastly, P is said to be correct if P is bijective and its inverse P! is bounded on Y. If an
operator P is injective (correct), then the corresponding equation Pu = f is called uniquely solvable (correct).

If ¥, € X*,i =1,...,m, then we denote by ¥ = col(¥y,...,¥,,) and ¥(x) =col(Vy(z),...,Tn(z)).
If g1,...,9m € X, then we write ¢ = (g1,...,9m) € Xm. We will denote by ¥(g) the n x n matrix whose
i, j-th entry ¥;(g;) is the value of functional ¥; on element g;. It is easy to verify that for a constant m xk
matrix C holds ¥(gC) = ¥(g9)C. We denote below by 0, the zero matrix and by I, the identity
m x m matrix. By 0 we will denote the zero column vector.

1. Main Results

First we generalize Theorem 1 [7], where prove the necessary solvability condition of the operator Bs
without to clame the linear independence of the vectors p,q,r. R

Theorem 1.1 Let X be a complex Banach space, A a bijective linear operator and I = A~! its inverse,
® = col(®q,...,P,,) € X, and p = (P1,.sPm), 4 = (¢1,,@m), * = (r1,...,7m) € X;n.  Let the operator
By : X — X be defined by

Bsou A%y — p®(u) — qP(Au) — r®(A%u) = f,
D(B) = D(A%). (4)

The following statements are true:
(i) The operator Bs is injective (uniquely solvable) if and only if

o(r) — 1n, ®(q) ®(p)

det W = det ®(Ir) ®(Iq) — 1., ®(Ip) # 0. (5)

O(I%r) (I’q)  @(I*p) —1m
(ii) If the operator Bs is injective, then it is bijective and the unique solution to (4) for any f € X is given

by

o(f)
uw=By'f=Df—(I’r I’q I’p )W | oIf) |. (6)

(1% f)

(iii) If the inverse operator I = A~ is bounded on X , that is, A is correct, then the operator Bs is correct.
Proof. (i) The sufficient solvability condition is proved as in [7]. We prove now the neccesary solvability
condition, i.e. we prove that if Bs is an injective operator then det W # 0, or equivalently, if det W = 0, then
Bs is not injective. Let det W = 0. Then there exists a nonzero vector of constants ¢ = col(cy, ca,c3), where
c; = col(ci1, ..., Cim), i = 1,2,3, such that Wec = 0. Consider the element ug = I*(rc; + qcs + pc3) € D(EQ).
Note that ug # 0, alternatively rc; +qca+pcz = 0 and from We = 0 and the linearity of a functional vector
® follows that

o(r) =1,  (q) o(p) c1
We = O(Ir) ®(Iq) — 1., ®(Ip) Co
®(I%r) ®(1%q) ®(I%p) — 1., c3

®(r)c; —c1 + ®(q)ez + P(p)es
= ®(Ir)cy + (Iq)ce — co + P(Ip)cs =
®(I%r)c; + ®(I1%q)ce + P(I°p)cs — c3

®(rc; + qcp + pes) — ¢; c1 0
= ® (I(rey + qea + pe3)) — co =—|ca | =10
i} (12(1‘01 +qco + p03)) —c3 c3 0

Then ¢; = 0,7 =1,2,3 and so ¢ = 0. But by hypothesis ¢ # 0. So ug # 0. That uy € ker By is proved as
in [7]. Thus we proved that, if By is an injective operator then det W # 0. Statments (ii), (iii) are proved
as in Theorem 1 [7].



Generalizations to some Integro-differential equations embodying powers of a differential operator 17

We generalize Theorem 2 [7], where prove the necessary solvability condition of the operator By without
to clame the linear independence of the vectors p,q,r,s,z. R

Theorem 1.2 Let the space X, the operator A and its inverse operator I = A~!, and the vectors
®, p, q, r, as above. Let s =1(81,...,8m), 2= (21,..., 2m) € X, and the operator By : X — X be defined by

B = A*u—p®(u) — q®(Au) — r®(A%u) — s®(A%u) — zB(A*u) = f,
D(By) = D(AY), (7)

where f € X. Then the following statements are true:
(i) The operator By is injective if and only if

detV # 0,
where
®(z) — 1, (s) D(r)
d(Iz) O(Is) — 1, ®(Ir)
VvV = (I2z) ®(1%s) o(I°r) — 1,,

®(I%z) O(I3s) O (I%r)

O (I'z) O (I*s) ®(I*r)
®(q) ®(p)
®(Iq) ®(Ip)

©(I*q) o(I%p)

O(I3q) — 1, o(I°p)
@(14(1) q)(I4p) - 17n
(ii) If the operator By is injective, then it is bijective and the unique solution to (7) for any f € X is given
by

®(f)
(1f)
U :I4f—(I4z I*s I*r I%q 1'4p)V_1 o(1%f) |. (8)
(1% f)
(I f)

(iii) If the inverse operator I = A~ is bounded on X , that is, A s correct, then the operator B, is correct.
Proof. (i) The sufficient solvability condition is proved as in [7]. We prove now the neccesary solvability
condition, i.e. we prove that if B4 is an injective operator then det V # 0, or equivalently, if det'V = 0, then
By is not injective. Let det V = 0. Then there exists a nonzero vector of constants ¢ = col(cy, ca, 3,4, Cs5),
where ¢; = col(ci1, ..., Cim), 7 = 1,...,5 such that Vc = 0. Consider the element ug = I*(zc; + sco + rcz +
+4qcy +pes) € D(ﬁ‘l). Note that ug # 0, alternatively zcy +sco +res +qcs + pes =0 and from Ve =0 and
the linearity of a functional vector ® follows that

D(z) — 1, D(s) (r)
O(1z) O(Is) — 1,, O(Ir)
Ve = O(1%z) O(1%s) ®(I%r) — 1,,

O(I3z) O (I3s) ®(I%r)

O (I'z) O (I's) O(I'r)
®(q) o(p) c1
®(Iq) ®(Ip) Co
o(I%q) o(I°p) cs
O(I3q) — 1, o(I3p) cy

®(Iq) O(I*p) — 1,, Cs
®(z)c; — ¢ + P(s)ce + D(r)cs3 + P(q)cs + (p)cs
®(Iz)c; + D(Is)cy — g + P(Ir)cs + P(Iq)cy + P(Ip)cs
= ®(1%z)cy + ®(I%s)cy + ®(I%r)c3 — c3 + ®(12q)cy + D(I%p)cs
®(I3z)cy + ®(I%s)cy + @(IPr)cs + P(I3q)cs — cq + D(IPp)cs
| ®(I'z)cy + P(I's)cy + B(I'r)cs + ®(I*q)es + P(I'p)es — cs

cocococob—rnr—r— 1

®(zcy + sca + res + qeg + pes) — ¢ c1
® (I(zcy + sca +res + qey + pes)) — €2 Co
= i} (12(z01 +scy +rc3 + qeq + pc5)) —c3 | =—]| ¢c3 | =
i} (I3(zc1 +scy +rc3 + qeq + pc5)) —C4 Cy
| @ (I*(zc1 +sco +re3 + qey + Pes)) — €5 cs
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Then ¢; =0,7=1,...,5 and so ¢ =0. But by hypothesis ¢ # 0. So ug # 0. That ug € ker B, is proved as
in [7]. Thus if By is an injective operator then detV # 0. Statments (ii), (iii) are proved as in Theorem 2
[7].

Below we generalize Theorem 3.4 [9], where in the case of a Hilbert space H was proved the correctness
and selfadjointness of the operator Bs corresponding to the boundary value problem:

ng = A\3$ - Y<121\£E7Ft>Hm — S<A\2$7Ft>]—[m - G<121\3{E,Ft>Hm = f,
D(B3) = D(A%),

where A is a correct selfadjoint operator, ¥ = A2G — S(Ft,gG>Hm - G(Fﬂz@G}Hm,
S =AG — G(Ft,A\G>Hm and C is a Hermitian m x m matrix.

Theorem 1.3 Let the space X, the operator A and its inverse operator I = Eil, and the vectors
® p,q, r, s as above. Let the operator B3 : X — X be defined by

Bsu = Adu— p®(u) — q@(ﬁu) — r@(A\Qu) - s@(ﬁ?’u) =f
D(Bs) = D(A?), (10)

where f € X. Then the following statements are true:
(i) The operator Bs is injective if and only if

det L #£ 0,
where
O(s) — 1 o(r) ®(q) ®(p)
O (I%s) o (I%r) ®(I%q) — 1, o (I*p) '
O(I3s) ®(I%r) ®(I3q) o(I3p) —

(ii) If the operator Bs is injective, then Bs is bijective and the unique solution to (10) for any f € X is
given by
®(f)
_ . _ O(If)
w =By'f=01f— (I’ I’r I’q IPp )L™! : 12
3 f f ( q P ) (I)(sz) ( )
(I°f)
(iii) If the inverse operator I = A~ is bounded on X , that is, A s correct, then the operator Bs is correct.
Proof. (i) Let detL # 0 and u € ker Bz. Then

Ay — p®(u) — qP(Au) — r®(A%u) — s®(A%u) =0, wu e D(A%). (13)

By applying the inverse operator I = A~! on the both sides of (13) and on the equations following from
(13), we get

~

A2y — Ip®(u) — Iq®(Au) — Ir®(A%u) — Is®(A3u) =0
Au — I?pd(u) — 12qP(Au) — I2r®(A%u) — [2sD(A%u) =
u— I3p®(u) — I3q®(Au) — I3rd(A%u) — [3sd(A3u) = 0. (14)
Now applying the functional ® on the both sides of (13) and the above system, we obtain the system

[D(s) — 1)@ (A2u) + ®(r)@(A%u) + (q)P(Au) + B(p)®(u) =
O(I5)0(A%) + [@(Ir) = 1,n| ®(A%u) + 2(Iq)@ (AU)+<I>(IP)<I>(U)
O(I%8)(A%u) + @ 2r)®(A%) + [(I%q) — 1,4]P (AU)+<I>(IQP)‘I)(U):

(

D(A2
D(A2
(1 (@

O (I3s)D(A3u) + B(I3r)D(A2%u) + ®(13q)®(Au) + [®(I3p) — 1,,]®(v)

n

0,

0,
or .

O(A3u)

L ‘I’(gf“ _

O(Au

P(u)

where the matrix L is given in (11). Then, since detL # 0, we get

D(A%u) = O(A%u) = B(Au) = d(u) = 0. (16)

=
o O O

~
(en)
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Substitution (16) into (14) implies that u = 0. Thus ker B3 = {0} and hence Bjs is an injective operator.
Conversely. We prove that if Bs is an injective operator then det L # 0, or equivalently, if detL = 0, then
Bs is not injective. Let detL = 0. Then there exists a nonzero vector of constants ¢ = col(cy,co,cC3,Cyq),
where ¢; = col(c;1, ..., Cim), i = 1,...,4 such that Lc = 0. Consider the element ug = I3(sc; + rcy + qes +
+ pcy) € D(A\‘l). Note that ug # 0, because alternatively sc; + rcy + qcs + pcy = 0 and then from Lec =0
follows that Lc =

O(s) =1 () ®(q) @(p) c1

_ d(Is) o(Ir) —1,, ®(1q) ®(Ip) )
O(1%s) ®(I%r) ®(I1%q) — 1, ®(I%p) c3

O (I3s) o (I3r) d(I3q) o(I*p) — 1, cy

P(s)cy — ¢ + D(r)ce + P(q)es + P(p)ey
®(Is)c; + ®(Ir)cs — co + P(Iq)cs + P(Ip)cy
®(I%s)cy + P(I%r)cy + P(I%q)c3 — c3 + P(I%p)cy
®(I3s)cy + ®(I%r)cy + (I13q)cs + @(I°p)cy — ¢4

®(scy +res +qeg + pey) — ¢ cy 0

B ®(I(sc; +rea+qes+peg))—c2 | | c2 | _ | O
B ® (I*(sc; +rez + qes +peg)) —cz | cs | |0
| @ (13(501 +rcy +qes + pC4) —cy Cy 0

Then ¢c; =0,i=1,...,4 and thus we obtain ¢ = 0. Remind that by hypothesis ¢ # 0. So ug # 0. We will
prove that ug € ker Bs. Indeed
Bsug = A3ug — p®(ug) — q@®(Aug) — r®(A%u) — s®(A3uq)
=scy + ey + qes + pes — p® (I°(seq + res + qe; + pey))
—qd (Iz(scl +rcy +qes + pC4)) —1® (I(sc; + res + qes + pey))
—s® (sc; + rco + qes + pey)
= 7(57 r,q, p)LCOI(Clv C2,C3, C4) = *(S, r,q, p)LC = 7(57 r,q, p>0 = 0.
Then ker Bz # {0} and Bj is not injective. Thus we proved that Bj is an injective operator if and only if
det L # 0.
(ii) From (i) follows that detL # 0. Then problem 10 has a unique solution. Acting as in the proof of (i)
for any f e X we get
A2y — Ip®(u) — Iq®(Au) — Ird(
Au— I?p®(u) — I2q®(Au) — 12r<1>(
u— IPp®(u) — I3qCI>(ﬁu) - I?’r(I)(A\

O(A2y) — Is®(A3u) = If,

A2y) — 2s®(A3u) = I2f, (17)
u) — Bs®(A3u) = I3 . (18)

Now applying the functional ® on the both sides of (13) and (18), we obtain

[8(5) ~ L J0(A0) + B()B(E) + S(@)(Aw) + B(p)2() = ~2()).
~0 (1) B(A) + [B(1) — 1,)@(A7u) + B(T)@(Au) + (Ip)B(w) = ~B(I})
—0(178)8(A%) + B(IPr)2(A%) + [&(1%a) — L] (Au >+¢><I2 JB(u) = —B(12]),
—0(IPs)®(A%u) + B(I*1)®(A%u) + D(I*Q)®(Au) + [@(1°p) — 1,,]0(u) = ~B(1*f),
o (Au) o(f)
v D(A%u) _ O(If)
O (Au) (I*f)
D(u) D(I°f)
The last equation gives R
@A) °0
Q(A%u) | _ | @US
sy |~ | et |- (19)
d(u) (I f)

Substituting (19) into (18), we get the unique solution (12) to problem (10). Since this solution holds for
any f € X, then R(Bs) = X, which means that Bj is bijective.

(iii) If the inverse operator I = A~! is bounded, then the operator B3 ', defined by (12) is bounded, since
the operator A= and the components of the vector ® are bounded. Hence, Bj is correct.
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Example 1.1 The operator Bj : C[0,1] — C]0,1] which corresponds to the problem

1 1 1
u’'(t) — 30t/ zu(x)dr — 10(1* + 1)/ xu'(z)dr — t3/ zu” (z)dz
0 0 0

= 34+ 72 +9t -5,
u(0) = w'(0) =u"(0) =0, (20)

is correct and the unique solution to ( 20), for every f € C]0,1], is given by
u =t — 213, (21)

Proof We refer to Theorem 1.3. If we compare equation ( 20) with equation ( 10) it is natural to take
Ay = u/"(t), with D(A3) = {u(t) :€ C3[0,1] : u(0) = v/(0) = u”(0) =0}, and so A is defined by
Au=u/(t), D(A) = {u(t) € C'[0,1] : u(0) = 0}. Then

A2y =u/(t), D(A?) = {u(t) € C2[0,1] : u(0) = u/(0) = 0}. It is easy to verify that for any f € C|0,1]

A () = If = [y fa)de, A72f=Df=1(If), A3f=If=I().
Alsowecantake p = p = 30t, q:IO(t2+1) r—r—t3 s=s=0,
fo zu(z)de, ®(Au) = fol zu'(z)dz, f ou'(x)dx, f =3+ 7t2 +31t — 5. Then by
Derlve programm, we compute [s = [%s = 133 = <I>( ) D(Is) = <I>(12 )= ®(I3s) =0,
Ir = [} 23dx = j, Ig=192 110, Ip =15t
I*r = I(Ir) fo ?de =1L, IPq= I(Iq) 5t + 562, I?p=I(Ip) = 5t3,

6
I r—I(12 ): 10 Pa=1(I"q )=€+3t3, I¥p=1(I"p) = 5t*,

o(r) = [ w(@®)de =1/5, ®(q) =10 [, x(22 + 1)dz = 15/2,
d(p) = 30 fo de =10,
O(Ir) = 3 fo Ydx = 24, d(Iq) = f (10T + 10z)dx = 4,
P(Ip) =15 fo 3dx =15/4,
O(I%r) = 735, ®(I%q) =25/18, ®(I%*p) =1
B(I%r) = oo, @(I%) = 5/14, B(I°p) = 5/24. Since
O(s) — 1, ®(r) ®(q) ®(p)
det L = (I)(IS) CD(II‘) - ]-m (I)(Iq) Q)(Ip)
®(I%s) ®(I%r) ®(1%q) — 1, (I%p)
o(I’s) P(Ir) o(I*q)  ®(I’p) -
-1 1/5 15/2 10
0 1/24—1 4 15/4 0
0 1/140 25/18—1 1 # 0,
0  1/960 5/14  5/24—1

problem (20), by Theorem 1.3, is correct. Further we compute
If fo( + 72% + 31w — 5)dx = Jt* + Tt3 + 342 — 5t
( )_ 1t5+ 7t4+31t3 5t2
( ) 1 t6+ 7t5+ 31t4 5t3
(f) = 587/60 (If) = 163/60 <I>(12f) = 323/630, ®(I3f) = 191/2880. Substituting the abow values
into (12), we obtain (21).
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