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АННОТАЦИЯ
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ABSTRACT
We establish solvability and correctness criteria for two Fredholm type linear integro-differential operators

B2, B4 encompassing up to second and fourth powers, respectively, of a differential operator Â with a
known inverse I = Â−1. We also derive explicit solution formulae to corresponding initial and boundary
value problems by using the inverse of the differential operator. The approach is based on the theory
of the extensions of linear operators in Banach spaces. Three example problems for ordinary and partial
integro-differential operators are solved.
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Introduction
Let C denote the set of all complex numbers and X,Y be complex Banach spaces. Let P : X → Y be

a linear operator and D(P ) and R(P ) its domain and range, respectively. We recall that a linear operator
P : X → Y is said to be injective (or uniquely solvable) if for all u1, u2 ∈ D(P ) such that Pu1 = Pu2,
follows that u1 = u2; alternatively, the operator P is injective if and only if kerP = {0}. A linear operator
P : X → Y is called surjective (or everywhere solvable) if R(P ) = Y . The operator P is called bijective if
P is both injective and surjective. Lastly, P is said to be correct if P is bijective and its inverse P−1 is
bounded on Y .

Let X = Y and let the bijective operator Â : X → X. We consider the power operators Â2 = ÂÂ and
Â4 = Â2Â2 defined as composite products, and the perturbed linear operators B2 : X → X, B4 : X → X
defined by

B2u = Â2u− pΦ(u)− qΦ(Âu)− rΦ(Â2u), (1)
B4u = Â4u− pΦ(u)− qΦ(Âu)− rΦ(Â2u)− sΦ(Â3u)− zΦ(Â4u), (2)

with D(B2) = D(Â2) and D(B4) = D(Â4), respectively. The column vector

Φ =

 Φ1

...
Φm

 , Φ(u) =

 Φ1(u)
...

Φm(u)

 , (3)

is a set of complex-valued, linear and bounded functionals Φj : X → C, j = 1, . . . ,m, i.e. Φj ∈ X∗ and
Φ ∈ X∗

m, where X∗ is the adjoint space of X. The row vectors

p =
(
p1 · · · pm

)
, q =

(
q1 · · · qm

)
, r =

(
r1 · · · rm

)
, (4)

s =
(
s1 · · · sm

)
, z =

(
z1 · · · zm

)
, (5)
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are sets of elements pj , qj , rj , sj , zj ∈ X, j = 1, . . . ,m, i.e. p, q, r, s, z ∈ Xm.
For later usage, we mention here that

Φ(p) =

 Φ1(p1) · · · Φ1(pm)
...

. . .
...

Φm(p1) · · · Φm(pm)

 , (6)

is the m ×m matrix whose i, j-th entry Φi(pj) is the value of the functional Φi on element pj . Also, we
note that Φ(pN) = Φ(p)N, where N is a m× k, k = 1, 2, . . . , constant matrix. Lastly, 1m symbolizes the
m×m identity matrix and 0 the zero column vector.

In the case where Â is a linear differential operator of order n and the functionals Φj , j =
= 1, . . . ,m, designate Fredholm integral operators with separable kernels, then B2, B4 describe Fredholm
linear integro-differential operators. Integro-differential equations play an important role in modeling physical
phenomena and processes in various disciplines in engineering, physics, biology, population dynamics,
epidemiology, finance and others. Initial and boundary value problems for integro-differential equations are
usually solved by numerical methods due to their complexity. Closed form solutions are obtained only for
a limited number of problems, see for example in [5], [6], [9], [10] and the recent works by the authors [2],
[3] [4], [7], [8].

In this paper, we are concerned with the solvability and the construction of the solution in closed form of
the following two ordinary or partial integro-differential equations subject to initial or boundary conditions,
which have not been studied before, namely

B2u = f, D(B2) = D(Â2), (7)
B4u = f, D(B4) = D(Â4), (8)

for any f ∈ X. Our approach is based on the theory of the extensions of linear operators in Banach spaces [1].
Problems (7), (8) are solved by using the inverse I = Â−1.

The rest of the paper is organized as follows. In Section 1., the theory is developed and two main theorems
are shown. In Section 2., the theory is applied to solve several example problems. Finally, some conclusions
are stated in Section 2..

1. Main Results
We first derive solvability and correctness criteria for the operator B2 and construct the exact solution

to initial and boundary value problems involving B2. We state the following theorem.
Theorem 1. Let X be a complex Banach space, Â : X → X a bijective linear operator and I = Â−1 its
inverse, Φ ∈ X∗

m, and p, q, r ∈ Xm. Let the operator B2 : X → X be defined by

B2u = Â2u− pΦ(u)− qΦ(Âu)− rΦ(Â2u) = f,

D(B2) = D(Â2), (9)

where f ∈ X. The following statements are true:

(i) If

detW = det

 Φ(r)− 1m Φ(q) Φ(p)
Φ(Ir) Φ(Iq)− 1m Φ(Ip)
Φ(I2r) Φ(I2q) Φ(I2p)− 1m

 ̸= 0, (10)

then the operator B2 is injective and everywhere solvable (bijective). The unique solution to (9) for any
f ∈ X is given by

u = B−1
2 f =

= I2f −
(
I2r I2q I2p

)
W−1

 Φ(f)
Φ(If)
Φ(I2f)

 . (11)

(ii) If the operator B2 is injective and the vectors p, q, r are linearly independent, then detW ̸= 0.

(iii) If the inverse operator I = Â−1 is bounded on X, that is, Â is correct, then the operator B2 is correct.

Proof. (i) Let detW ̸= 0 and u ∈ kerB2, i.e.

Â2u− pΦ(u)− qΦ(Âu)− rΦ(Â2u) = 0, (12)
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where u ∈ D(Â2). By applying the inverse operator I = Â−1 twice on both sides of (12), we obtain in
succession

Âu− IpΦ(u)− IqΦ(Âu)− IrΦ(Â2u) = 0, (13)
u− I2pΦ(u)− I2qΦ(Âu)− I2rΦ(Â2u) = 0. (14)

Acting now by the functional vector Φ on the both sides of (12)-(14), we obtain the following system of
equations

W

 Φ(Â2u)

Φ(Âu)
Φ(u)

 = 0, (15)

where the 3m× 3m matrix

W =

 Φ(r)− 1m Φ(q) Φ(p)
Φ(Ir) Φ(Iq)− 1m Φ(Ip)
Φ(I2r) Φ(I2q) Φ(I2p)− 1m

 . (16)

Since detW ̸= 0, it is concluded that

Φ(Â2u) = Φ(Âu) = Φ(u) = 0. (17)

Substitution of (17) into (14) yields u = 0. Thus, kerB2 = {0} and therefore B2 is an injective operator.
To find the solution to problem (9), we work as above. By applying the inverse operator I = Â−1 twice

on both sides of (9), we get successively

Âu− IpΦ(u)− IqΦ(Âu)− IrΦ(Â2u) = If, (18)
u− I2pΦ(u)− I2qΦ(Âu)− I2rΦ(Â2u) = I2f. (19)

Then acting by the vector of functionals Φ on both sides of (9), (18), (19), we acquire the system

W

 Φ(Â2u)

Φ(Âu)
Φ(u)

 = −

 Φ(f)
Φ(If)
Φ(I2f)

 . (20)

By inverting (20), we obtain  Φ(Â2u)

Φ(Âu)
Φ(u)

 = −W−1

 Φ(f)
Φ(If)
Φ(I2f)

 . (21)

Putting (19) into the form

u = I2f +
(
I2r I2q I2p

) Φ(Â2u)

Φ(Âu)
Φ(u)

 , (22)

and then substituting (21) into (22), we obtain formula (11) which is the unique solution of the problem (9).
Finally, because f in (11) is an arbitrary element of X, it is implied that R(B2) = X. Hence B2 is

surjective.
(ii) We prove that if B2 is an injective operator then detW ̸= 0, or equivalently, if detW = 0 then B2

is not injective. Let detW = 0. Then there exists a nonzero vector of constants c = col(c1, c2, c3), where
ci = col(ci1, . . . , cim), i = 1, 2, 3, such that

Wc = 0. (23)

Consider the element u0 = I2(rc1 + qc2 + pc3) ∈ D(Â2). It follows that

B2u0 = Â2u0 − pΦ(u0)− qΦ(Âu0)− rΦ(Â2u0) =

= −
(
r q p

)
Wc = 0, (24)

by taking into account (23). This means that u0 ∈ kerB2. Note that u0 ̸= 0, because by hypothesis p,q, r
are linearly independent and c ̸= 0. Therefore B2 is not injective.

(iii) In (11), the functionals of the vector Φ are bounded. From the hypothesis that Â is correct, it is
implied that I = Â−1 and I2 are bounded on X. Therefore the operator B−1

2 is bounded on X, and from (i)
follows that B2 is correct. The theorem is proved. �
Remark 1. In the cases where one or two of the vectors p,q, r are equal to zero vector, then analogous
results to Theorem 1 can be derived. In practice, we can obtain the solution formula directly from (11)
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by removing the corresponding columns and rows. For instance, let us assume that r = 0. In this case the
problem (9) degenerates to the following one,

B2u = Â2u− pΦ(u)− qΦ(Âu) = f,

D(B2) = D(Â2). (25)

Then the operator B2 is injective if

detW = det

[
Φ(Iq)− 1m Φ(Ip)

Φ(I2q) Φ(I2p)− 1m

]
̸= 0, (26)

and the unique solution of (25) for any f ∈ X is given by

u = B−1
2 f =

= I2f −
(
I2q I2p

)
W−1

(
Φ(If)
Φ(I2f)

)
. (27)

Next, we elaborate on the solvability and correctness of the operator B4 and the exact solution of initial
and boundary value problems incorporating B4. We show the subsequent theorem.
Theorem 2. Let X be a complex Banach space, Â : X → X a bijective operator and I = Â−1 its inverse,
Φ ∈ X∗

m, and p, q, r, s, z ∈ Xm. Let the operator B4 : X → X be defined by

B4u = Â4u− pΦ(u)− qΦ(Âu)− rΦ(Â2u)− sΦ(Â3u)− zΦ(Â4u) = f,

D(B4) = D(Â4), (28)

where f ∈ X. Then the following statements are true:

(i) If

detV = det


Φ(z)− 1m Φ(s) Φ(r)

Φ(Iz) Φ(Is)− 1m Φ(Ir)
Φ(I2z) Φ(I2s) Φ(I2r)− 1m

Φ(I3z) Φ(I3s) Φ(I3r)
Φ(I4z) Φ(I4s) Φ(I4r)

Φ(q) Φ(p)
Φ(Iq) Φ(Ip)
Φ(I2q) Φ(I2p)

Φ(I3q)− 1m Φ(I3p)
Φ(I4q) Φ(I4p)− 1m


̸= 0, (29)

then the operator B4 is injective and everywhere solvable on X (bijective). The unique solution to the
problem (28) for any f ∈ X is given by

u = B−1
4 f =

= I4f −
(
I4z I4s I4r I4q I4p

)
V−1


Φ(f)
Φ(If)
Φ(I2f)
Φ(I3f)
Φ(I4f)

 . (30)

(ii) If the operator B4 is injective and the vectors p, q, r, s, z are linearly independent, then detW ̸= 0.

(iii) If the inverse I = Â−1 is bounded on X, i.e. Â is correct, then the operator B4 is correct.

Proof. (i) Let detV ̸= 0 and u ∈ kerB4, i.e.

Â4u− pΦ(u)− qΦ(Âu)− rΦ(Â2u)− sΦ(Â3u)− zΦ(Â4u) = 0, (31)

where u ∈ D(Â4). By applying the inverse operator I = Â−1 four times on both sides of (31), we get
consecutively

Â3u− I
(
pΦ(u)− qΦ(Âu)− rΦ(Â2u)− sΦ(Â3u)− zΦ(Â4u)

)
= 0, (32)

Â2u− I2
(
pΦ(u)− qΦ(Âu)− rΦ(Â2u)− sΦ(Â3u)− zΦ(Â4u)

)
= 0, (33)

Âu− I3
(
pΦ(u)− qΦ(Âu)− rΦ(Â2u)− sΦ(Â3u)− zΦ(Â4u)

)
= 0, (34)

u− I4
(
pΦ(u)− qΦ(Âu)− rΦ(Â2u)− sΦ(Â3u)− zΦ(Â4u)

)
= 0. (35)
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Implementing the vector of functionals Φ on both sides of (31)–(35), we obtain the system of equations

V


Φ(Â4u)

Φ(Â3u)

Φ(Â2u)

Φ(Âu)
Φ(u)

 = 0, (36)

where the 5m× 5m matrix V is given in (29). Then, since detV ̸= 0, we acquire

Φ(Â4u) = Φ(Â3u) = Φ(Â2u) = Φ(Âu) = Φ(u) = 0. (37)

Substitution of (37) into (35) yields u = 0. Thus, kerB4 = {0} and hence B4 is an injective operator.
To obtain the solution of (28) we work in similar manner. By applying the inverse operator I = Â−1 on

both sides of (28) four successive times, we get

Â3u− I
(
pΦ(u)− qΦ(Âu)− rΦ(Â2u)− sΦ(Â3u)− zΦ(Â4u)

)
= If, (38)

Â2u− I2
(
pΦ(u)− qΦ(Âu)− rΦ(Â2u)− sΦ(Â3u)− zΦ(Â4u)

)
= I2f, (39)

Âu− I3
(
pΦ(u)− qΦ(Âu)− rΦ(Â2u)− sΦ(Â3u)− zΦ(Â4u)

)
= I3f, (40)

u− I4
(
pΦ(u)− qΦ(Âu)− rΦ(Â2u)− sΦ(Â3u)− zΦ(Â4u)

)
= I4f. (41)

Acting by the functional vector Φ on both sides of (28) and (38)-(41), we obtain the system

V


Φ(Â4u)

Φ(Â3u)

Φ(Â2u)

Φ(Âu)
Φ(u)

 = −


Φ(f)
Φ(If)
Φ(I2)f
Φ(I3f)
Φ(I4f)

 . (42)

We write (41) in matrix form

u = I4f +
(
I4z I4s I4r I4q I4p

)


Φ(Â4u)

Φ(Â3u)

Φ(Â2u)

Φ(Âu)
Φ(u)

 . (43)

By inverting (42) and substituting into (43), we get the unique solution (30) of the problem (28).
Lastly, f in (30) is an arbitrary element of X and therefore R(B4) = X. Hence the operator B4 is

surjective.
(ii) We prove that if B4 is an injective operator then detV ̸= 0, or equivalently, if detV = 0 then B4

is not injective. Let detV = 0. Then there exists a nonzero vector c = col(c1, c2, c3, c4, c5), where ci =
= col(ci1, . . . , cim), i = 1, . . . , 5, such that

Vc = 0. (44)

Consider the element u0 = I4(zc1 + sc2 + rc3 + qc4 + pc5) ∈ D(Â4). Then, we have

B4u0 = Â4u0 − pΦ(u0)− qΦ(Âu0)− rΦ(Â2u0)− sΦ(Â3u0)− zΦ(Â4u0) =

= −
(
z s r q p

)
Vc = 0, (45)

by making use of (44). This means that u0 ∈ kerB4. Note that u0 ̸= 0 since by hypothesis the vectors
p,q, r, s, z are linearly independent and c ̸= 0. Hence B4 is not injective.

(iii) Since the functionals in vector Φ and the operators I, Ii, i = 2, 3, 4, are bounded on X, it is concluded
that the operator B−1

4 is bounded too and from (i) follows that B2 is correct. The theorem is proved. �
Remark 2. In the cases where one or more of the vectors p,q, r, s, z are zero, then similar results to
Theorem 2 can be obtained. Actually, we can have the corresponding solution formula directly from (30) by
removing the like columns and rows. For example, suppose that p = 0. Then the problem (28) reduces to

B4u = Â4u− qΦ(Âu)− rΦ(Â2u)− sΦ(Â3u)− zΦ(Â4u) = f,

D(B4) = D(Â4). (46)
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Then the operator B4 is injective if detV ̸= 0, where

V =


Φ(z)− 1m Φ(s) Φ(r) Φ(q)

Φ(Iz) Φ(Is)− 1m Φ(Ir) Φ(Iq)
Φ(I2z) Φ(I2s) Φ(I2r)− 1m Φ(I2q)
Φ(I3z) Φ(I3s) Φ(I3r) Φ(I3q)− 1m

 . (47)

The unique solution of the problem (46) for every f ∈ X is given by

u = B−1
4 f =

= I4f −
(
I4z I4s I4r I4q

)
V−1


Φ(f)
Φ(If)
Φ(I2f)
Φ(I3f)

 . (48)

2. Applications
Example 1. Consider the following problem

z′′(x)− λ

∫ 1

−1

x[z′(t) + z(t)]dt = x, x ∈ [−1, 1],

z(0) = 1, z′(0) = 0. (49)

Making the substitution u(x) = z(x)− 1, we get

u′′(x)− λx

∫ 1

−1

[u′(t) + u(t)]dt = (1 + 2λ)x, x ∈ [−1, 1],

u(0) = u′(0) = 0. (50)

We take X = C[−1, 1], accordingly X1 = C1[−1, 1], X2 = C2[−1, 1], and

Âu = u′, D(Â) = {u : u ∈ X1, u(0) = 0},
Â2u = u′′, D(Â2) = {u : u ∈ X2, u(0) = u′(0) = 0},

Φ(u) = (Φ1(u)) =

(∫ 1

−1

u(t)dt

)
,

Φ(Âu) =
(
Φ1(Âu)

)
=

(∫ 1

−1

u′(t)dt

)
,

p = q = (λx), r = 0,

f = (1 + 2λ)x, (51)

m = 1, and the operator B2 : X → X as

B2u = Â2u− pΦ(u)− qΦ(Âu) =

= u′′ − λx

∫ 1

−1

u(t)dt− λx

∫ 1

−1

u′(t)dy = (1 + 2λ)x,

D(B2) = D(Â2) = {u : u ∈ X2, u(0) = u′(0) = 0}.

Note that Â is injective and R(Â) = X, Φ1 ∈ X∗, and p, q are linearly dependent. It is known that the
inverse operator I and its composite I2 are given by

I· = Â−1· =
∫ x

0

· dt, I2· = Â−2· =
∫ x

0

(x− t)dt , (52)

and they are bounded on X. As stated by Remark 1 and by using the results in (51) and (52), we compute

detW = det

[
Φ(Iq)− 1 Φ(Ip)
Φ(I2q) Φ(I2p)− 1

]
=

= det

[
λ
3 − 1 λ

3
0 −1

]
= 1− λ

3
.

From Theorem 1, it is implied that the operator B2 is correct if λ ̸= 3. In this case the unique solution to
the problem (50) is

u(x) =
2λ+ 1

2(λ− 3)
x3, (53)

by means of (27), while the solution to the problem (49) follows from u(x) = z(x)− 1.
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Example 2. Let Ω = {x ∈ R3 : |x| < 1}, ∂Ω = {x ∈ R3 : |x| = 1} and H4(Ω) the Sobolev space of all functions
of L2(Ω) which have their partial generalized derivatives up to the fourth order Lebesgue integrable. Consider
the problem,

△2u(x)− g(x)

∫
Ω

v(y)△u(y)dy = f(x), x ∈ Ω,

u|∂Ω = 0, △u|∂Ω = 0, (54)

where g(x), v(x), f(x) ∈ L2(Ω) are given functions and u(x) ∈ H4(Ω) is the unknown function.
Comparing (54) with (9) in Theorem 1, we take X = L2(Ω) and

Âu = △u, D(Â) = {u : u ∈ H2(Ω), u|∂Ω = 0},
Â2u = △2u, D(Â2) = {u : u ∈ H4(Ω), u|∂Ω = 0, △u|∂Ω = 0},

Φ(Âu) =
(
Φ1(Âu)

)
=

(∫
Ω

v(x)△u(x)dx
)
,

p = r ≡ 0, q = (g(x)) , (55)

m = 1, and the operator B2 : X → X defined as

B2u = Â2u− qΦ(Âu), D(B2) = D(Â2). (56)

Since v(x) ∈ X, it is concluded that the functional Φ1 is bounded on X, i.e. Φ1 ∈ X∗. The Dirichlet problem
for Poisson equation

△u(x) = f(x), u(x)|∂Ω = 0, u ∈ H2(Ω), f ∈ X, (57)

is known to be everywhere solvable and admits a unique solution for almost all x ∈ Ω, viz.

u(x) = Â−1f(x) =

∫
Ω

G(x, y)f(y)dy, ∀f ∈ X, (58)

where G(x, y) is Green’s function. Thus, the operator Â is bijective and

I· = Â−1· =
∫
Ω

G(x, y) · dy,

I2· = Â−2· =
∫
Ω

G(x, y)
∫
Ω

G(y, t) · dtdy. (59)

From Theorem 1, Remark 1 and the use of (55) and (59) we have

detW = det [Φ(Iq)− 1] =

∫
Ω

v(x)

∫
Ω

G(x, y)g(y)dydx− 1. (60)

If
∫
Ω
v(x)

∫
Ω
G(x, y)g(y)dydx ̸= 1, then the operator B2 is injective and the unique solution of the

problem (54), for any f ∈ X, is obtained by substitution into

u = B−1
2 f = I2f − I2qW−1Φ(If). (61)

Example 3. Let the problem

u(4)(x)− 48x2
∫ 1

0

(1− t)u′(t)dt− 15x3
∫ 1

0

(1− t)u′′(t)dt−

−8x

∫ 1

0

(1− t)u′′′(t)dt− 3x4
∫ 1

0

(1− t)u(4)(t)dt =

= x4 +
1

2
x3 +

1

3
x2 + 2x− 1,

u(0) = u′(0) = u′′(0) = u′′′(0) = 0. (62)

We take X = C[0, 1], suitably X1 = C1[0, 1], X2 = C2[0, 1], X3 = C3[0, 1], X4 = C4[0, 1], and

Âu = u′, D(Â) = {u : u ∈ X1, u(0) = 0},
Â2u = u′′, D(Â2) = {u : u ∈ X2, u(0) = u′(0) = 0},
Â3u = u′′′, D(Â3) = {u : u ∈ X3, u(0) = u′(0) = u′′(0) = 0},
Â4u = u(4), D(Â4) = {u : u ∈ X4, u(0) = u′(0) = u′′(0) = u′′′(0) = 0},

Φ(Âu) =
(
Φ1(Âu)

)
=

(∫ 1

0

(1− t)u′(t)dt

)
,
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Φ(Â2u) =
(
Φ1(Â

2u)
)
=

(∫ 1

0

(1− t)u′′(t)dt

)
,

Φ(Â3u) =
(
Φ1(Â

3u)
)
=

(∫ 1

0

(1− t)u′′′(t)dt

)
,

Φ(Â4u) =
(
Φ1(Â

4u)
)
=

(∫ 1

0

(1− t)u(4)(t)dt

)
,

p = 0, q =
(
48x2

)
, r =

(
15x3

)
, s = (8x) , z =

(
3x4
)
,

f = x4 +
1

2
x3 +

1

3
x2 + 2x− 1, (63)

m = 1, and the operator B4 : X → X defined by

B4u = Â4u− qΦ(Âu)− rΦ(Â2u)− sΦ(Â3u)− zΦ(Â4u),

D(B4) = D(Â4).

Notice that Â is injective and R(Â) = X, Φ1 ∈ X∗, and q, r, s, z are linearly independent. It is known from
elementary books of differential equations that

Ik· = Â−k· = 1

(k − 1)!

∫ x

0

(x− t)k−1 · dt, k = 1, 2, 3, 4, (64)

and they are bounded on X. According to Theorem 2 and specifically to Remark 2, we form the matrix V
and compute its determinant, viz.

detV = det


Φ(z)− 1 Φ(s) Φ(r) Φ(q)
Φ(Iz) Φ(Is)− 1 Φ(Ir) Φ(Iq)
Φ(I2z) Φ(I2s) Φ(I2r)− 1 Φ(I2q)
Φ(I3z) Φ(I3s) Φ(I3r) Φ(I3q)− 1

 =

= det



− 9
10

4
3

3
4 4

1
70 − 2

3
1
8

4
5

1
560

1
15 −55

56
2
15

1
5040

1
90

1
448 −103

105


=

=
240388859

444528000
̸= 0.

Hence, from Theorem 2, Remark 2 and the use of (63) and (64) follows that the operator B4 is correct and
the unique solution to the problem (62) is given analytically by

u(x) =
(x− 5)x4

120
. (65)

Conclusions

We have presented a method for constructing the exact solution to initial and boundary value problems
for a class of integro-differential operators embodying powers of a correct differential operator. We have
included several problems to demonstrate the applicability and efficiency of the method. The proposed solution
technique can be easily incorporated to any computer algebra system and therefore it may be a useful tool
to researchers and students.

In closing, we state without elaborating that under certain conditions the two problems discussed in the
present paper can become of the kind,

B2u = B2u = f, D(B2) = D(Â2),

B4u = B4u = f, D(B4) = D(Â4),

where the operator B : X → X is defined by

Bu = Âu− pΦ(u)− qΦ(Âu), D(B) = D(Â), (66)

to facilitate further the solution process by employing decomposition techniques.
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