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ABSTRACT

We establish solvability and correctness criteria for two Fredholm type linear integro-differential operators
Bs, By encompassing up to second and fourth powers, respectively, of a differential operator A with a
known inverse I = A~!. We also derive explicit solution formulae to corresponding initial and boundary
value problems by using the inverse of the differential operator. The approach is based on the theory
of the extensions of linear operators in Banach spaces. Three example problems for ordinary and partial
integro-differential operators are solved.
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Introduction

Let C denote the set of all complex numbers and X,Y be complex Banach spaces. Let P: X — Y be
a linear operator and D(P) and R(P) its domain and range, respectively. We recall that a linear operator
P: X — Y is said to be injective (or uniquely solvable) if for all uy,us € D(P) such that Pu; = Pusg,
follows that u; = ug; alternatively, the operator P is injective if and only if ker P = {0}. A linear operator
P:X =Y is called surjective (or everywhere solvable) if R(P) =Y. The operator P is called bijective if
P is both injective and surjective. Lastly, P is said to be correct if P is bijective and its inverse P~! is
bounded on Y. R R R
_Let X =Y and let the bijective operator A: X — X. We consider the power operators A? = AA and
A* = A%A? defined as composite products, and the perturbed linear operators By : X — X, By : X — X
defined by

Bou = A%u—p®(u) — q®(Au) — rd(A%), (1)
B = A'w—p®(u) — q®(Au) — r®(A%) — s®(A%u) — 20 (A%), (2)
with D(By) = D(A2) and D(B,) = D(A*), respectively. The column vector
@1 <I>1(u)
o= o P(u) = : , (3)
(I)nL (I)m(u)
is a set of complex-valued, linear and bounded functionals ®; : X — C, j =1,...,m, ie. ®; € X* and
® € X, where X* is the adjoint space of X. The row vectors

P:(Pl Pm)7 q:((h CIm)7 I'Z(Tl Tm), (4)
s:(s1 Sm), ZZ(Z1 Zm), (5)
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are sets of elements pj, gj, 75, 55, 2, € X, j=1,...,m, i.e. p,q, r, s,z € X,,.
For later usage, we mention here that
Pi(p1) - Pilpm)
®(p) = : : , (6)
Qp(p1) - Ponl(pm)
is the m x m matrix whose ¢, j-th entry ®;(p;) is the value of the functional ®; on element p;. Also, we
note that ®(pN) = ®(p)N, where N is a m x k, k=1,2,..., constant matrix. Lastly, 1,, symbolizes the

m x m identity matrix and O the zero column vector.

In the case where A is a linear differential operator of order n and the functionals ®;, j =
= 1,...,m, designate Fredholm integral operators with separable kernels, then By, B4 describe Fredholm
linear integro-differential operators. Integro-differential equations play an important role in modeling physical
phenomena and processes in various disciplines in engineering, physics, biology, population dynamics,
epidemiology, finance and others. Initial and boundary value problems for integro-differential equations are
usually solved by numerical methods due to their complexity. Closed form solutions are obtained only for
a limited number of problems, see for example in [5], [6], [9], [10] and the recent works by the authors [2],
31 4], [7], [8].

In this paper, we are concerned with the solvability and the construction of the solution in closed form of
the following two ordinary or partial integro-differential equations subject to initial or boundary conditions,
which have not been studied before, namely

Bou = f, D(By)=D(A?), (7)
Biu = f, D(Bi)=D(AY), (8)

for any f € X. Our approach is based on the theory of the extensions of linear operators in Banach spaces [1].
Problems (7), (8) are solved by using the inverse I = A1,

The rest of the paper is organized as follows. In Section 1., the theory is developed and two main theorems
are shown. In Section 2., the theory is applied to solve several example problems. Finally, some conclusions
are stated in Section 2..

1. Main Results

We first derive solvability and correctness criteria for the operator Bs and construct the exact solution
to initial and boundary value problems involving By. We state the following theorem.
Theorem 1. Let X be a complexr Banach space, A:X > X a bijective linear operator and I = A~ ts
inverse, & € X*  and p, q,r € X,,,. Let the operator By : X — X be defined by

Bou = A%u—p®(u) — q®(Au) — r®(A%u) = f,
D(By) = D(&), (9)
where f € X. The following statements are true:
(i) If
o(r) — 1n, ®(q) ®(p)
det W = det d(Ir) o(Iq) —1,, o(Ip) #0, (10)
O(I*r) o(I*q)  o(I’p) -

then the operator Bs is injective and everywhere solvable (bijective). The unique solution to (9) for any
f e X is given by

T B;lf:
o(f)
= DIPf—(I°’vr I’q I’p )W '| @Uf) |. (11)
o(I1%f)

(ii) If the operator By is injective and the vectors p, q, r are linearly independent, then det W # 0.
(iii) If the inverse operator I = A=Y s bounded on X, that is, A is correct, then the operator By is correct.
Proof. (i) Let det W #£0 and u € ker Bs, i.e.
A%y — pd(u) — q®(Au) — r®(A%u) = 0, (12)
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where u € D(A\Q). By applying the inverse operator I = A~! twice on both sides of (12), we obtain in
succession
Au — Ip®(u) — Iq®(Au) — Ir®(A2%u) = 0, (13)
u— I*p®(u) — 12q®(Au) — I2r®(A%u) = 0. (14)

Acting now by the functional vector ® on the both sides of (12)-(14), we obtain the following system of
equations

D (A%)
W ®Au) | =0, (15)
P(u)
where the 3m x 3m matrix
O(r) — 1n, ®(q) ®(p)
W = d(Ir) o(Iq) —1,, o(Ip) . (16)
®(I%r) ®(1%q) ®(I°p) — 1,
Since det W # 0, it is concluded that
B(A%u) = ®(Au) = ®(u) = 0. (17)

Substitution of (17) into (14) yields uw = 0. Thus, ker B, = {0} and therefore By is an injective operator.
To find the solution to problem (9), we work as above. By applying the inverse operator I = A~! twice
on both sides of (9), we get successively
Au — Ip®(u) — Iq®(Au) — Ir®(A%u) = If, (18)
(

-~

u
u— I?p®(u) — I2q®(Au) — I2r®(A%u) = I2f. (19)

Then acting by the vector of functionals ® on both sides of (9), (18), (19), we acquire the system

®(A%u) (f)
W (i |=-| eun |. (20)
 (u) o(12f)
By inverting (20), we obtain R
o (Au) o(f)
d(Au) | =-WH| o(f) |. (21)
D(u (I f)
Putting (19) into the form
D(A%)
u=If+(I*’r I*’q I’p )| ®Au) |, (22)
D (u)

and then substituting (21) into (22), we obtain formula (11) which is the unique solution of the problem (9).
Finally, because f in (11) is an arbitrary element of X, it is implied that R(B2) = X. Hence Bj is
surjective.
(ii) We prove that if By is an injective operator then det W # 0, or equivalently, if det W =0 then By
is not injective. Let det W = 0. Then there exists a nonzero vector of constants ¢ = col(cy, ce,c3), where
c; = col(¢ity ...y Cim), i =1,2,3, such that

We =0. (23)
Consider the element ug = I2(rcy 4 qcg + pes) € D(A2). It follows that
Boug = Aug— p®(uo) — q@(A\uo) - r<I>(//1\2u0) =
S —(r qa p)WC:O, (24)

by taking into account (23). This means that ug € ker Bs. Note that ug # 0, because by hypothesis p,q,r
are linearly independent and c # 0. Therefore By is not injective. R

(iii) In (11), the functionals of the vector ® are bounded. From the hypothesis that A is correct, it is
implied that I = A1 and I? are bounded on X. Therefore the operator B3 !'is bounded on X, and from (1)
follows that By is correct. The theorem is proved. [J
Remark 1. In the cases where one or two of the vectors p,q,r are equal to zero vector, then analogous
results to Theorem 1 can be derived. In practice, we can obtain the solution formula directly from (11)
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by removing the corresponding columns and rows. For instance, let us assume that r = 0. In this case the
problem (9) degenerates to the following one,

Bou = E%A— p®(u) — q@(Au) = f,
D(By) = D(A?). (25)

Then the operator By is injective if

_ ®(Iq) — 1, ®(Ip)
and the unique solution of (25) for any f € X is given by
u = B;lf =
_ d(1
= IPf—(I°q I’p )W 1((1)((1.2?) ) (27)

Next, we elaborate on the solvability and correctness of the operator B, and the exact solution of initial
and boundary value problems incorporating Bs. We show the subsequent theorem. R
Theorem 2. Let X be a complex Banach space, A: X — X a bijective operator and I = A™' its inverse,

bec X}, and p,q,r, s, z€ X, Let the operator By : X — X be defined by

B = A'u—p®(u) — qP(Au) — rd(A%) — s®(A%) — 2®(A%u) = f,

D(By) = D(AY), (28)
where f € X. Then the following statements are true:
(i) 1f
®(z) — 1,, D(s) d(r)
O(1z) O(Is) — 1, O(Ir)
detV. = det O(1%z) (1I%s) ®(I%r) — 1,,

O (13z) O(I3s) ®(I3r)

O (I'z) O (I's) O(I'r)
®(q) ®(p)
®(Iq) ®(Ip)
o(I%q) o(I’p)

(I’(ng) - 1m (I)(Igp)
o(I'q)  (I'p) —1nm
£ 0, (29)
then the operator By is injective and everywhere solvable on X (bijective). The unique solution to the
problem (28) for any f € X is given by

u = Bjl'f=
®(f)
O(If)
= I'f—(1I'z I*s I*r I*q I‘p )V7'| ®(?f) |. (30)
(I°f)
(I'f)

(i) If the operator By is injective and the wvectors p, q, r, s, z are linearly independent, then det W # 0.
(#ii) If the inverse I = A=Y s bounded on X, i.e. A is correct, then the operator By is correct.
Proof. (i) Let det'V # 0 and u € ker By, i.e.
Aty — p®(u) — qP(Au) — r®(A%u) — s®(Au) — 2®(Aw) =0, (31)

where u € D(E‘l). By applying the inverse operator I = A~! four times on both sides of (31), we get
consecutively

ABu—1 (pq>(u) — q®(Au) — r®(A2u) — s(A3u) — ch(,@iu)) =0, (32)
A2y 12 (p<1>(u) — q®(Au) — r®(A2u) — sO(A%u) — z<1>(ﬁ4u)) —0, (33)
Au—1 (p@(u) — q®(Au) — r®(A2u) — s(APu) — z¢>(24u)) —0, (34)

w— I* (p(I)(u) — q®(Au) — r®(A2u) — sd(A%u) — z<1><24u)) = 0. (35)
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Implementing the vector of functionals ® on both sides of (31)—(35), we obtain the system of equations

~

N

O(A*u)
O(A3u)
D(Au)
D(u)
where the 5m x 5m matrix V is given in (29). Then, since detV # 0, we acquire
d(A') = B(Au) = ®(A%u) = ®(Au) = ®(u) = 0. (37)

Substitution of (37) into (35) yields w = 0. Thus, ker By = {0} and hence B, is an injective operator.

To obtain the solution of (28) we work in similar manner. By applying the inverse operator I = A-! on
both sides of (28) four successive times, we get

AT (p¢>(u) — q®(Au) — r®(A2u) — s(A%u) — z@(@u)) = If, (38)
A2y — 2 (p(I)(u) — q®(Au) — r®(A2%0) — sB(A3u) — z¢>(,14u)) = I2f, (39)
Au— 1 (p<1>(u) — q®(Au) — r®(A2%u) — s®(A%u) — z<1>(24u)) = I3F, (40)

u— I (p(I)(u) — q®(Au) — r®(A%u) — sP(A%u) — z<1>(24u)) = I'7. (41)

Acting by the functional vector ® on both sides of (28) and (38)-(41), we obtain the system

O(A'u) o(f)
D(A%u) (1f)
V| ®A%W) | =-] eU>f |. (42)
&(Au) (I°f)
d(u) (I f)
We write (41) in matrix form
D(Au)
D (A3u)
u=I'f+( Iz I's I'r I'q I'p)| &(A%) (43)
O (Au)
D(u)

By inverting (42) and substituting into (43), we get the unique solution (30) of the problem (28).

Lastly, f in (30) is an arbitrary element of X and therefore R(B,) = X. Hence the operator By is
surjective.

(ii) We prove that if B, is an injective operator then det'V # 0, or equivalently, if detV =0 then By
is not injective. Let det V. = 0. Then there exists a nonzero vector ¢ = col(cy, s, C3,Cyq,C5), Where ¢; =
= col(¢i1,---,Cim), ©=1,...,5, such that

Ve =0. (44)
Consider the element ug = I4(z01 +scy +re3 +qcy + pes) € D(E‘l). Then, we have
Byug = A'ug—p®(ug) — qP(Aug) — r®(A%ug) — s®(A3ug) — z®(A%ug) =
= —(z s r q p)Vec=0, (45)

by making use of (44). This means that uy € ker B4. Note that ug # 0 since by hypothesis the vectors
pP,q,T,s,z are linearly independent and ¢ # 0. Hence B, is not injective.

(iii) Since the functionals in vector @ and the operators I, I, i = 2,3, 4, are bounded on X, it is concluded
that the operator By ! is bounded too and from (i) follows that B, is correct. The theorem is proved. (]
Remark 2. In the cases where one or more of the vectors p,q,r, s, z are zero, then similar results to
Theorem 2 can be obtained. Actually, we can have the corresponding solution formula directly from (30) by
removing the like columns and rows. For example, suppose that p =0. Then the problem (28) reduces to

B = A'u-— q(I)(A\u) — r@(A\Qu) — s@(gsu) — Z‘I)(121\4’U,) =1,
D(By) = D(AY). (46)
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Then the operator By is injective if det'V # 0, where

®(z) — 1, D(s) O(r) ®(q)
vV — O(1z) O(Is) — 1, d(Ir) d(1q) (47)

O (1%z) O(1%s) O(I°r) — 1., ®(1%q)

O(I3z) O(I3s) ®(I3r) ®(I3q) —

The unique solution of the problem (46) for every f € X is given by
u = B;lf:

o(f)

= I'f—(I'z I's I'r I'q )V ;}’&2];2) : (48)
o(I°f)

2. Applications

Example 1. Consider the following problem

1
(@) — )\/ o)+ 2Ot =2, @€ [-1,1],
-1
2(0)=1, Z'(0)=0. (49)
Making the substitution u(z) = z(x) — 1, we get
1
o () )\a:/ /(1) + u(®)]dt = (1+ 20z, =€ [-1,1],
-1
u(0) = u/(0) = 0. (50)
We take X = C[-1,1], accordingly X! = C*[-1,1], X? = C?[-1,1], and
Au =/, D(A):{u:uexl, u(0) = 0},
A2 =", D(A?) ={u:ue X2, u(0)=1u(0)=0},

v = (@1(0) = [ 11 ult)ar)
O(Au) = (cpl(ﬁu)) - (/11 u’(t)dt) ,

p=q=(\z), r=0,
f=0+2\z, (51)
m =1, and the operator By : X — X as
Bou = A?u—p®(u)— qP(Au) =
= u”—)\x/ / (t)dy = (1 + 2)\)z,
D(By) = D(A?) ={u:ue X?, u(0)=1u(0)=0}.

Note that A is injective and R(A\) =X, &; € X*, and p, q are linearly dependent. It is known that the
inverse operator I and its composite I? are given by

= A1 :/ dt, I*=A"2 :/ (x —t)dt, (52)
0 0
and they are bounded on X. As stated by Remark 1 and by using the results in (51) and (52), we compute
_ ®(Iq)—1  ®(Ip) | _
detW = det[ O(2q) B(I%p)—1 |~

A A

FAN— zZ )\
= t 3 3 —

de |: O :| 1 .

From Theorem 1, it is implied that the operator By is correct if A # 3. In this case the unique solution to
the problem (50) is
220+1 4

b Npet
2(A=3)
by means of (27), while the solution to the problem (49) follows from u(z) = z(z) — 1.

u(z) = (53)
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Example 2. Let Q = {z e R®: |z| < 1}, 9Q = {z € R3 : |z| = 1} and H*(2) the Sobolev space of all functions
of Ly(2) which have their partial generalized derivatives up to the fourth order Lebesgue integrable. Consider
the problem,

B2u(a) ~ g(a) [ o@)dulp)dy = f(o), @€,
Q
uppo =0,  Aujpg =0, (54)

where g(z),v(z), f(x) € Ly(Q2) are given functions and u(x) € H*(Q2) is the unknown function.
Comparing (54) with (9) in Theorem 1, we take X = Ly(2) and

Au = Au, (A):{U:UEHQ(Q)7 ujpq = 0},
Aty =A%, D(A?) = {u:ueH Q) upg =0, Aujq =0},

D(A2
@(du) = (@1(Aw) = ( /Q v(x)Au(z)dx),

p=r=0, q=(g9(z)), (55)
m =1, and the operator By : X — X defined as
Byu = A%u — q®(Au), D(B,) = D(A?). (56)

Since v(z) € X, it is concluded that the functional ®; is bounded on X, i.e. ®; € X*. The Dirichlet problem
for Poisson equation
Au(z) = f(z), u(@)po =0, weH*Q), feX, (57)

is known to be everywhere solvable and admits a unique solution for almost all x € ), viz.
u(@) = A f(0) = [ G iy, V€ X, (58)
where G(x,y) is Green’s function. Thus, the operator A is bijective and

I = /gxy dy,

roo= A= [ gy /g y.1) - dtdy. (59)
Q
From Theorem 1, Remark 1 and the use of (55) and (59) we have
det W = det [®(Iq) — 1] / / G(z,y)g(y)dydx — 1. (60)
If [, v(z) [, 6( y)dydr # 1, then the operator B, is injective and the unique solution of the
problem (54), for any f € X, is obtained by substitution into
u=By'f =1?f - IP’qW'®(If). (61)

Example 3. Let the problem
1 1
u® () — 4822 1 —t)u/ (t)dt — 1523 1—t)u’(t)dt —
() (1 =)' (t) (1 —1)u"(t)
1 ’ 1 ’
—8x / (1 —t)u(t)dt — 32* / (1 —t)yu® (t)dt =
0

0
1 1
:z4+§x3+§x2+2x—1,
w(0) = u/(0) = u”(0) = «"(0) = 0. (62)
We take X = C[0,1], suitably X! = C'[0,1], X? = C?[0,1], X3 = C?[0,1], X* = C*[0,1], and

Au=1/, D(A)={u:ueX", u0)=0}
Ay =", D(A%) ={u:ue X2 u(0)=1u(0)=0},
Au=u", DA ={u:uecX? u0)=1u
Atu=u®, DAY ={u:uec X*, u0)=1u(0)=

®(Au) = (@1(A\u)) - </01(1 - t)u’(t)dt) :
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(@1(2%)) - </01(1 - t)u”(t)dt) :

O(Au) = (<I>1(A3u)) - ( /0 1(1 - t)u’”(t)dt) ,

p=0, q:(48x2), r:(15x3), s = (8z), Z:(3x4),
f:x4+%x3+%x2+2m—1, (63)

m =1, and the operator By : X — X defined by

Aty — q®(Au) — r®(A%u) — s®(A%u) — zB(A'u),
D(AY).

B4u
D(By)

Notice that A is injective and R(A\) =X, &, € X*, and q, r, s, z are linearly independent. It is known from
elementary books of differential equations that

1

(k—1)!

and they are bounded on X. According to Theorem 2 and specifically to Remark 2, we form the matrix V
and compute its determinant, viz.

Ik = Ak = / (z—t)*1dt, k=1,2,3,4, (64)
0

®(z) -1  @(s) P(r) ®(q)
B o(Iz) ®(Is)—1  ®(Ir) o(Iq)
detVo = det | 5250 a(1%s) o(%r)—1 (I%q)
| ©(I%2) O(I3s) O (I%r) O(I3q) — 1
r—9 4 3 4 7
10 3 4
12 1 4
70 3 8 5
= det| 1 1 s 2 |=
560 15 56 15
11 1 1o
5040 90 448 105
240388859
144528000 7

Hence, from Theorem 2, Remark 2 and the use of (63) and (64) follows that the operator By is correct and
the unique solution to the problem (62) is given analytically by

(x — 5)3:4.

120 (65)

u(x) =

Conclusions

We have presented a method for constructing the exact solution to initial and boundary value problems
for a class of integro-differential operators embodying powers of a correct differential operator. We have
included several problems to demonstrate the applicability and efficiency of the method. The proposed solution
technique can be easily incorporated to any computer algebra system and therefore it may be a useful tool
to researchers and students.

In closing, we state without elaborating that under certain conditions the two problems discussed in the
present paper can become of the kind,

Bou = B*u=f, D(By)=D(A2),
Bau = Blu=f, D(B;)= DAY,
where the operator B : X — X is defined by
Bu = Au—p®(u) — q®(Au), D(B)= D(A), (66)

to facilitate further the solution process by employing decomposition techniques.
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