УДК 511.334

 $\Gamma.B.$ Воскресенская 1

ФУНКЦИИ МАККЕЯ И ТОЧНОЕ РАССЕЧЕНИЕ В ПРОСТРАНСТВАХ МОДУЛЯРНЫХ ФОРМ 2

В статье рассматриваются структурные проблемы в теории модулярных форм. Полностью изучен феномен точного рассечения для пространств $S_k(\Gamma_0(N),\chi)$, где χ — квадратичный характер с условием $\chi(-1)=(-1)^k$. Доказано, что для уровней $N\neq 3$, 17, 19 рассекающая функция является мультипликативным эта-произведением целого веса. Таблица рассекающих функций приведена в статье. Показано, что пространство рассекающей функции одномерно. Размерности пространств вычисляются по формуле Коэна-Остерле, порядки модулярных форм в параболических вершинах — по формуле Биаджиоли.

Ключевые слова: модулярные формы, параболические формы, эта-функция Дедекинда, параболические вершины, ряды Эйзенштейна, дивизор функции, структурные теоремы, формула Коэна-Остерле.

Введение

В настоящей статье мы рассмотрим структурные проблемы пространств модулярных форм. Основные классические определения и обозначения можно найти в книгах [1–4]. Опишем модельную задачу для наших исследований. В классическом случае уровня N=1 рассматривается полная модулярная группа $\Gamma = \Gamma(1) = SL_2(\mathbf{Z})$, известен следующий факт: любая параболическая форма четного веса $k \geqslant 12$ $g(z) \in S_k(\Gamma)$ (для меньших весов их нет) является произведением дельта-функции $\Delta(z)$ на модулярную (не обязательно параболическую) форму h(z) веса k-12. При k=12 пространство $S_{12}(\Gamma) = \langle \Delta(z) \rangle$. Имеем,

$$S_k(\Gamma) = \Delta(z) \cdot M_{k-12}(\Gamma).$$

Такая ситуация называется mочным рассечением. Пусть V — линейное пространство, состоящее из функций.

Определение.

Говорят, что имеет место *точное рассечение*, если любая функция из пространства V есть произведение фиксированной функции g(z) на функцию из пространства W, то есть

$$V = g(z) \cdot W,$$

g(z) называется рассекающей функцией.

В этой статье мы исследуем ситуацию для уровней N>1. В случае четного веса характер рассекающей функции тривиальный, в случае нечетного веса характер χ рассекающей функции квадратичный с условием $\chi(-1)=-1$.

Заметим, что $\Delta(z)=\eta^{24}(z)$, где $\eta(z)$ — эта-функция Дедекинда, коэффициенты Фурье $\Delta(z)$ мультипликативны. Функция $\eta(z)$ не имеет нулей на верхней полуплоскости, это существенно. Всего эта-произведений с мультипликативными коэффициентами целого веса существует ровно двадцать восемь, они были открыты в 1985 году Дж. МакКеем и двумя его коллегами. Их называют мультипликативными эта-произведениями или функциями МакКея.

Мы покажем, что в рассматриваемых случаях точное рассечение имеет место в том и только том случае, когда рассекающая функция — мультипликативное ета-произведение, если уровень $N \neq 3, 17, 19$. Исключительные уровни также исследованы.

Теоремы 1–2 в статье цитируются, теоремы 3-6 являются новыми.

¹© Воскресенская Г.В., 2017

Воскресенская Галина Валентиновна (galvosk@mail.ru), кафедра алгебры и геометрии, Самарский национальный исследовательский университет имени академика С.П. Королева, 443086, Российская Федерация, г. Самара, Московское шоссе, 34. ²Работа выполнена при финансовой поддержке гранта РФФИ 16-01-00154A.

Сначала мы приведем известные факты, которые являются основой исследований, а затем доказательства новых результатов.

1. Функции МакКея

Определение.

 η —**частным** называется функция вида: $f(z) = \prod_{j=1}^s \eta^{t_j}(a_j z), \quad a_j \in \mathbf{N}, \ t_j \in \mathbf{Z}$. Если $t_j \in \mathbf{N} \ \forall j,$ то f(z) называется η —произведением.

Линейная комбинация η -частных называется η -полиномом. Приведем мультипликативные эта-произведения целого веса с указанием весов и характеров.

Далее эти функции появятся в наших рассмотрениях в качестве рассекающих функций.

Об их интересных разнообразных свойствах можно прочесть в [5–8].

Таблица 1

f(z)	k	N	$\chi(d)$
$\eta(23z)\eta(z)$	1	23	$\left(\frac{-23}{d}\right)$
$\eta(22z)\eta(2z)$	1	44	$\left(\frac{-11}{l}\right)$
$\eta(21z)\eta(3z)$	1	63	$\left(\frac{-7}{d}\right)$
$\eta(20z)\eta(4z)$	1	80	$\left(\frac{-5}{d}\right)$
$\eta(18z)\eta(6z)$	1	108	$\left(\frac{-3}{d}\right)$
$\eta(16z)\eta(8z)$	1	128	$\left(\frac{-2}{d}\right)$
$\eta^2(12z)$	1	144	$ \begin{array}{c} \left(\frac{-5}{d}\right) \\ \left(\frac{-3}{d}\right) \\ \left(\frac{-2}{d}\right) \\ \left(\frac{-1}{d}\right) \\ 1 \end{array} $
$\eta^4(6z)$	2	36	1
$\eta^2(8z)\eta^2(4z)$	2	32	1
$\eta^2(10z)\eta^2(2z)$	2	20	1
$\eta(12z)\eta(6z)\eta(4z)\eta(2z)$	2	24	1
$\eta(15z)\eta(5z)\eta(3z)\eta(z)$	2	15	1
$\eta(14z)\eta(7z)\eta(2z)\eta(z)$	2	14	1
$\eta^2(9z)\eta^2(3z)$	2	27	1
$\eta^2(11z)\eta^2(z)$	2	11	1
$\eta^3(6z)\eta^3(2z)$	3	12	$\left(\frac{-3}{d}\right)$
$\eta^6(4z)$	3	16	$\left(\frac{-1}{d}\right)$
$\eta^2(8z)\eta(4z)\eta(2z)\eta^2(z)$	3	8	$\left(\frac{-2}{d}\right)$
$\frac{\eta^{3}(7z)\eta^{3}(z)}{\eta^{2}(6z)\eta^{2}(3z)\eta^{2}(2z)\eta^{2}(z)}$	3	7	$ \begin{array}{c} \left(\frac{-1}{d}\right) \\ \left(\frac{-2}{d}\right) \\ \left(\frac{-7}{d}\right) \\ 1 \end{array} $
$\eta^2(6z)\eta^2(3z)\eta^2(2z)\eta^2(z)$	4	6	1
$\eta^4(5z)\eta^4(z)$	4	5	1
$\eta^8(3z)$	4	9	1
$\eta^4(4z)\eta^4(2z)$	4	8	1
$\eta^4(4z)\eta^2(2z)\eta^4(z)$	5	4	$\left(\frac{-1}{d}\right)$
$\eta^6(3z)\eta^6(z)$	6	3	1
$\frac{\eta^{6}(3z)\eta^{6}(z)}{\eta^{12}(2z)}$	6	4	1
$\frac{\eta^8(2z)\eta^8z)}{\eta^{24}(z)}$	8	2	1
$\eta^{24}(z)$	12	1	1

2. Порядок в параболических вершинах

Теорема 1.

Пусть m, n, N-натуральные числа, n|N, (m,n)=1.

Eсли f(z) удовлетворяет условию теоремы 2, то порядок нуля в параболической вершине $\frac{m}{n}$ равен

$$\frac{N}{24} \sum_{j=1}^{s} \frac{(n, a_j)^2 t_j}{(n, \frac{N}{n}) n a_j}.$$

Непосредственно проверяется, что порядок функции МакКея в каждой параболической вершине равен 1.

Эта теорема была доказана А. Биаджиоли в 1990 году [10].

3. Формула размерности

Эта формула была открыта в 1977 французскими математиками Ж. Остерле и А. Коэном [4]. Пусть χ — характер Дирихле, $\chi(-1)=(-1)^k$, f — его кондуктор. Если p|N, то обозначим через r_p — максимальную степень, в которой p делит N, через s_p — максимальную степень, в которой p делит f.

$$\lambda(r_p, s_p, p) = \begin{cases} p^{r'} + p^{r'-1}, & 2s_p \leqslant r_p = 2r', \\ 2p^{r'}, & 2s_p \leqslant r_p = 2r' + 1, \\ 2p^{r_p - s_p}, & 2s_p \geqslant r_p \end{cases}$$

$$\nu_k = \begin{cases} 0, & k \equiv 1 \pmod{2}, \\ -\frac{1}{4}, & k \equiv 2 \pmod{4}, \\ \frac{1}{4}, & k \equiv 0 \pmod{4} \end{cases}$$

$$\mu_k = \begin{cases} 0, & k \equiv 1 \pmod{3}, \\ -\frac{1}{3}, & k \equiv 2 \pmod{3}, \\ \frac{1}{3}, & k \equiv 0 \pmod{3} \end{cases}$$

Теорема 2.

Если k — целое, χ — характер Дирихле по модулю N, $\chi(-1)=(-1)^k$, то

$$dim_{\mathbf{C}}(S_k(\Gamma_0(N),\chi)) - dim_{\mathbf{C}}(M_{2-k}(\Gamma_0(N),\chi)) = \frac{(k-1)N}{12} \prod_{p|N} (1+p^{-1}) - \frac{1}{2} \cdot \prod_{p|N} \lambda(r_p,s_p,p) + \nu_k \cdot \sum_{x:x^2+1\equiv 0(N)} \chi(x) + \mu_k \cdot \sum_{x:x^2+x+1\equiv 0(N)} \chi(x)$$

Если k>2, то $dim_{\mathbf{C}}(M_{2-k}(\Gamma_0(N),\chi))=0$. Левая часть становится равна $dim_{\mathbf{C}}(S_k(\Gamma_0(N),\chi))$. Если $k\leqslant 0$, то $dim_{\mathbf{C}}(S_k(\Gamma_0(N),\chi))=0$. Левая часть становится равна $-dim_{\mathbf{C}}(M_{2-k}(\Gamma_0(N),\chi))$.

Теорема 3.

Пусть $f(z) \in S_l(\Gamma_0(N), \chi)$ — мультипликативное эта-произведение с характером χ . Тогда имеет место точное рассечение

$$S_k(\Gamma_0(N), \chi^k) = f(z) \cdot M_{k-l}(\Gamma_0(N), \chi^{k-1}).$$

Доказательство.

Для мультипликативных эта–произведений χ – квадратичный характер,

 $\chi(-1) = -1$. Пусть $g(z) \in S_k(\Gamma_0(N), \chi^k)$. Тогда $ord_s g(z) \geqslant 1$ для любой параболической вершины s. Если f(z) — мультипликативное эта—произведение с характером χ веса l, тогда

$$h(z) = \frac{g(z)}{f(z)} \in M_{k-l}(\Gamma_0(N), \chi^{k-1}),$$

так как $ord_sh(z)\geqslant 0$. Здесь мы используем тот факт, что если $f_1(z)$ и $f_2(z)$ — модулярные формы уровня N с характерами χ_1 и χ_2 соответственно, то

 $f_1(z) \cdot f_2(z)$ является модулярной формой уровня N с характером $\chi_1 \cdot \chi_2$.

4. Одномерность пространства рассекающей функции

Теорема 4.

Если

$$S_k(\Gamma_0(N),\chi)=f(z)\cdot M_{k-l}(\Gamma_0(N),\chi_1),$$
 где $f(z)\in S_l(\Gamma_0(N),\chi_2),\quad \chi=\chi_1\cdot\chi_2,$ то $dim\ S_l(\Gamma_0(N),\chi_2)=1.$

Доказательство.

Для уменьшения громоздкости введем обозначения

$$V = S_k(\Gamma_0(N), \chi), \quad W = M_{k-l}(\Gamma_0(N), \chi_1), \quad U = S_l(\Gamma_0(N), \chi_2).$$

Допустим противное: $dim\ S_l(\Gamma_0(N), \chi_2) > 1$.

Тогда пространство $f(z) \cdot W \subset V$ для любого $f(z) \in U$.

Пусть $h(z) \in W$, и h(z) не является параболической формой, s — такая параболическая вершина, в которой она не обращается в ноль. Пусть f(z) — такая функция из U, что $ord_s(f)$ минимальный. Пусть g(z) такая функция из U, что $ord_s(g(z)) > ord_s(g(z))$. Имеем, $f(z) \cdot h(z) = g(z) \cdot h_1(z)$, h(z), h(z), $h(z) \in W$. Но это равенство невозможно, так как порядок в s у функции справа больше, чем порядок в s у функции слева. Значит, все параболические формы из W имеют одинаковый порядок в s, но это также невозможно, так как если $f_1(z)$ и $f_2(z)$ — нормированные формы из W, то $f_1(z) - f_2(z)$ имеет больший порядок в s. Полученные противоречия доказывают теорему.

5. Интерпретация компонент формулы размерности

Известно, что индекс $\mu_0(N) = |\Gamma:\Gamma_0(N)| = N \cdot \prod_{p|N} (1+p^{-1})$. Поэтому первое слагаемое в сумме справа равно $\frac{k-1}{12} \cdot \mu_0(N)$.

Второе слагаемое обозначим через $\frac{1}{2} \cdot D_1 = \frac{1}{2} \cdot \prod_{p|N} \lambda(r_p, s_p, p)$.

Покажем, что D_1 равно количеству $\mu_0(N)$ параболических вершин относительно $\Gamma_0(N)$ [4]. Известно, что

$$\mu_{\infty}(N) = \sum_{d \mid N} \phi((d, \frac{N}{d})).$$

Сначала покажем, что $\mu_{\infty}(N)$ — мультипликативная функция. Пусть N и M — взаимно простые натуральные числа, тогда $\forall d|N,\ \delta|M$ числа $(d,\frac{N}{d})$ и $(\delta,\frac{N}{\delta})$ взаимно просты; когда d пробегает все делители $N,\ \delta$ пробегает все делители NM. Получаем,

$$\mu_{\infty}(N) \cdot \mu_{\infty}(M) = \sum_{d \mid N} \phi((d, \frac{N}{d})) \cdot \sum_{\delta \mid M} \phi((\delta, \frac{M}{\delta})) =$$

$$\sum_{d \mid N} \sum_{\delta \mid M} \phi((d, \frac{N}{d})) \cdot \phi((\delta, \frac{M}{\delta})) = \sum_{d \mid N} \sum_{\delta \mid M} \phi((d, \frac{N}{d}) \cdot (\delta, \frac{M}{\delta})) =$$

$$\sum_{d \mid N} \sum_{\delta \mid M} \phi((d\delta, \frac{NM}{d\delta})) = \sum_{\tilde{d} \mid MN} \phi((\tilde{d}, \frac{NM}{\tilde{d}})) = \mu_{\infty}(NM).$$

Пусть $N = p^{2r'}$. Тогда

$$\mu_{\infty}(N) = 2(\phi(1) + \phi(p) + \phi(p^2) + \dots + \phi(p^{r'-1})) + \phi(p^{r'}) = 2(1 + p - 1 + p^2 - p + \dots + p^{r'-1} - p^{r'-2}) + p^{r'} - p^{r'-1} = p^{r'} + p^{r'-1}.$$

Пусть $N = p^{2r'+1}$. Тогда

$$\mu_{\infty}(N) = 2(\phi(1) + \phi(p) + \phi(p^2) + \dots + \phi(p^{r'})) = 2p^{r'}.$$

Теперь из формулы для $\lambda(r_p, s_p, p)$ следует, что $D_1 = \mu_0(N)$. Также получим: если число n свободно от квадратов, (n, m) = 1, то

$$\mu_{\infty}(n \cdot m^2) = \prod_{p^{2l+1} || n} 2 \cdot p^{l_p} \cdot \prod_{p^{2l+1} || m} p^{l_p} + p^{l_p - 1}.$$

Обозначим через $D_{2,\chi} = \sum_{x:x^2+1\equiv 0(N)}\chi(x)$. Если χ — тривиальный характер, то $D_{2,\chi} = D_2$. Если N делится на 4 или на простое $p\equiv 3(4)$, то $D_2=D_{2,\chi}=0$.

Если $N=p_1^{\alpha_1}...p_s^{\alpha_s}$ или $N=2p_1^{\alpha_1}...p_s^{\alpha_s}$, где $p_i\equiv 1(4)$, то $D_2=2^s$ — количество делителей числа $\tilde{N}=p_1...p_s$. Далее будет показано, что если χ — квадратичный характер с условием $\chi(-1)=-1$, то $D_2=D_{2,\chi}=0$.

Обозначим через $D_{3,\chi} = \sum_{x:x^2+x+1\equiv 0(N)} \chi(x)$. Если χ — тривиальный характер, то $D_{3,\chi} = D_3$. Если N делится на 2, 9 или на простое $p\equiv 2(3)$, то $D_3=0$.

Если $N=p_1^{\alpha_1}...p_s^{\alpha_s}$ или $N=3p_1^{\alpha_1}...p_s^{\alpha_s}$, где $p_i\equiv 1(3)$, то $D_3=2^s$ — количество делителей числа $\tilde{N}=p_1...p_s$.

Параметр $D_{3,\chi}$ даст нетривиальный вклад в результат наших исследований. Сейчас мы докажем формулу, которая станет основой нашей техники.

Теорема 5.

Пусть n свободно от квадратов, (n, m) = 1, тогда

$$\frac{\mu_0(n \cdot m^2)}{\mu_{\infty}(n \cdot m^2)} = m \cdot \prod_{p^{2l_p+1} | | n} \frac{p^{l_p}(p+1)}{2}.$$

Доказательство.

Проведем преобразования:

$$\frac{\mu_0(n \cdot m^2)}{\mu_\infty(n \cdot m^2)} = \frac{n \cdot m^2 \cdot \prod_{p|N} \left(1 + \frac{1}{p}\right)}{\prod_{p^{2l_p+1} \parallel n} 2 \cdot p^{l_p} \cdot \prod_{p^{l_p} \parallel m} p^{l_p} + p^{l_p-1}} =$$

$$n \cdot m \cdot \frac{\prod_{p|n} \left(1 + \frac{1}{p}\right) \cdot \prod_{p^{l_p} \parallel m} p^{l_p} + p^{l_p-1}}{\prod_{p^{2l_p+1} \parallel n} 2 \cdot p^{l_p} \cdot \prod_{p^{l_p} \parallel m} p^{l_p} + p^{l_p-1}} =$$

$$n \cdot m \cdot \prod_{p^{2l_p+1} \parallel n} \frac{p+1}{2 \cdot p^{l_p+1}} = m \cdot \prod_{p^{2l_p+1} \parallel n} \frac{p^{l_p}(p+1)}{2}.$$

Формула получена.

6. Свойства характеров

В этом параграфе мы докажем некоторые свойства квадратичных характеров χ с условием $\chi(-1) = -1$, которые существенно используются в доказательствах.

Утверждение 1.

Если $N=p^l,\ l\geqslant 2,\ p$ — нечетное простое число, то не существует квадратичного характера со свойством $\chi(-1)=-1$ по модулю N.

Доказательство.

Пусть g — первообразный корень по модулю p^l , $\chi(g)=-1$, иначе характер был бы тривиальным. Имеем,

$$-1 \equiv g^{\frac{p^{l-1}(p-1)}{2}} (mod \ p^l), \quad \chi(-1) = \chi(g) \cdot \chi(g)^{\frac{p-1}{2}} = -\chi(g)^{\frac{p-1}{2}}.$$

Если $p\equiv 3 (mod\ 4)$, то $\chi(-1)=1$, если $p\equiv 1 (mod\ 4)$, то $-1\equiv h^2 (mod\ p^l)$, $h=g^{\frac{p^{l-1}(p-1)}{4}}$, следовательно $\chi(-1)=1$.

Утверждение 2.

Если $N=p_1^{l_1}...p_s^{l_s},\ l_j\geqslant 2,\ p_j$ — нечетные простые числа, то не существует квадратичного характера со свойством $\chi(-1)=-1$ по модулю N.

Доказательство.

Такой характер должен представляться в виде произведения $\chi = \chi_1...\chi_s$ характеров χ_j по модулю $p_j^{l_j}$, среди которых хотя бы один χ_j таков, что $\chi_j(-1) = -1$. Но такого характера нет в силу утверждения 1.

Утверждение 3.

Не существует нетривиального квадратичного характера со свойством $\chi(-1) = -1$ по модулю 2.

Доказательство.

Это следует из того, что $1 \equiv -1 \pmod{2}$.

Утверждение 4.

Не существует нетривиального квадратичного характера со свойством $\chi(-1) = -1$ по модулю простого числа $p \equiv 1 \pmod{4}$.

Доказательство.

Пусть q — первообразный корень по модулю p. Имеем,

$$-1 \equiv h^2 \pmod{p}, \quad h = g^{\frac{p-1}{4}}, \quad \chi(-1) = 1.$$

Из этого следует, что если χ — нетривиальный характер, то $D_2 = D_{2,\chi} = 0$.

Из доказанных утверждений получаем очевидное следствие.

Следствие.

Не существует квадратичного характера со свойством $\chi(-1) = -1$ по модулю N, если

- 1) $N = p_1^{l_1}...p_s^{l_s}, \quad l_j \geqslant 2, \quad p_j$ нечетные простые числа;
- 2) $N=2p_1^{l_1}...p_s^{l_s}, \quad l_j\geqslant 2, \quad p_j$ нечетные простые числа;

- 2) $N=2p_1...p_s$, $v_j\geqslant 2$, p_j пе ютиме простые писиа; 3) $N=p_1...p_s$, $p_j\equiv 1 (mod\ 4)$, p_j нечетные простые числа; 4) $N=2p_1...p_s$, $p_j\equiv 1 (mod\ 4)$, p_j нечетные простые числа; 5) $N=p_1^{k_1}...p_s^{k_s}\cdot q_1^{l_1}...q_t^{l_t}, k_j\geqslant 1, l_j\geqslant 2$, $p_j\equiv 1 (mod\ 4)$, $q_j\equiv 3 (mod\ 4)$, $p_j\ q_j$ нечетные простые числа; 6) $N=2p_1^{k_1}...p_s^{k_s}\cdot q_1^{l_1}...q_t^{l_t}, k_j\geqslant 1, l_j\geqslant 2$, $p_j\equiv 1 (mod\ 4)$, $q_j\equiv 3 (mod\ 4)$, $p_j\ q_j$ нечетные простые числа.

Формулировка основной теоремы

Доказательство этой теоремы образуют рассуждения следующих пунктов 8 и 9 вместе с результатом теоремы 3.

Теорема 6.

 Π усть χ — квадратичный характер по модулю $N \neq 3$, 17, 19 такой, что $\chi(-1) = -1$, k, l — полоэкительные числа. Тогда

$$S_k(\Gamma_0(N),\chi^k) = f(z) \cdot M_{k-l}(\Gamma_0(N),\chi^{k-l}),$$

где $f(z) \in S_l(\Gamma_0(N), \chi^l)$ тогда и только тогда f(z) — мультипликативное эта-произведение.

 $\Pi pu~N~=~3,~17,~19$ точное рассечение также имеет место, рассекающая функция не является эта-произведением. Причем должны выполняться условия

$$N=17,\ k\equiv 2(4), k\geqslant 6,\ l=2;\ N=19,\ k\equiv 2(6), k\geqslant 8,\ l=2.$$
 Здесь χ^l — тривиален, если l — четно.

Рассечение функциями нечетного веса с характерами 8.

Как мы уже отмечали в этом случае $D_2=0$. Разберем сначала случай, когда $D_3=0$, $D_1=D_{1,\chi}$.

8.1. Рассечение функциями веса 1 при $D_3 = 0$, $D_1 = D_{1,\chi}$

Если $dim\ S_1(\Gamma_0(N),\chi) = 1$, то $dim\ S_2(\Gamma_0(N)) = dim\ M_1(\Gamma_0(N),\chi)$.

Вычислим эти размерности и получим уравнение.

$$\dim M_1(\Gamma_0(N), \chi) = 1 + \frac{1}{2} \cdot \mu_{\infty}(N)$$

$$\begin{array}{ll} \dim \ M_1(\Gamma_0(N),\chi) = 1 + \frac{1}{2} \cdot \mu_{\infty}(N), \\ \dim \ S_2(\Gamma_0(N)) = 1 + \frac{N}{12} \cdot \mu_0(N) - \frac{1}{2} \cdot \mu_{\infty}(N). \end{array}$$

Отсюда получим

$$\frac{\mu_0(N)}{\mu_\infty(N)} = 12.$$

Это условие является необходимым, но, вообще говоря, недостаточным. Учитывая теорему 5, получим для $N=m^2\cdot n$, (m,n)=1, n свободно от квадратов.

$$m \cdot \prod_{p^{2l_p+1}||n} \frac{p^{l_p}(p+1)}{2} = 12.$$

Проанализировав это равенство элементарными методами, получим

N = 23, 33, 35, 42, 44, 56, 60, 63, 80, 96, 108, 128, 144.

Для $N=23,\ 44,\ 63,\ 80,\ 108,\ 128,\ 144$ существуют одномерные пространства $S_1(\Gamma_0(N),\chi)=< f(z)>,$ порожденные мультипликативными эта-произведениями, указанными в таблице 1. Далее, пусть $g(z)\in S_1(\Gamma_0(N),\psi)$.

Тогда $\frac{g(z)}{f(z)} \in M_0(\Gamma_0(N), \psi \cdot \chi^{-1})$, так как порядок f(z) в каждой параболической вершине равен 1. Это возможно лишь при условии, что $\psi \cdot \chi^{-1}$ — тривиальный характер, пространство $M_0(\Gamma_0(N), \psi \cdot \chi^{-1})$ состоит из констант. То есть $\psi = \chi$.

Покажем теперь, что для уровней $N=33,\ 35,\ 42,\ 56,\ 60,\ 96$ не существует параболических форм веса 1 с характером χ . Пусть N — один из этих уровней, кроме 42. Для каждого из этих уровней существует параболическая форма $g_N(z)$ веса 2 уровня N с тривиальным характером, у которой все нули сосредоточены в параболических вершинах и имеют порядок 2, первый коэффициент этой формы равен 1.

Имеем

$$deg(div \ g_N(z)) = 2\mu_{\infty}(N).$$

Если $f(z) \in S_1(\Gamma_0(N), \chi)$, то порядок этой формы в каждой параболической вершине не менее 1,

$$deg(div \ g_N(z)) = deg(div \ f^2(z)).$$

Следовательно, функция f(z) в каждой параболической вершине имеет ноль порядка 1, других нулей нет. Если считать, что первый коэффициент функции f(z) равен 1, то $g_N(z) = f^2(z)$. Но анализ первых коффициентов функции $g_N(z)$ показывает, что она не является квадратом другого ряда Фурье.

Выпишем эти функции явно:

 $g_{33}(z) = \eta(33z)\eta(11z)\eta(3z)\eta(z),$

 $g_{35}(z) = \eta(35z)\eta(7z)\eta(5z)\eta(z),$

 $g_{56}(z) = \eta(28z)\eta(14z)\eta(4z)\eta(2z),$

 $g_{60}(z) = \eta(30z)\eta(10z)\eta(6z)\eta(2z),$

 $g_{96}(z) = \eta(24z)\eta(12z)\eta(8z)\eta(4z).$

Для уровня N=42 ситуация аналогична. Контрольная функция имеет вес 4 $g_{42}(z)=\eta(42z)\eta(21z)\eta(14z)\eta(7z)\eta(6z)\eta(3z)\eta(2z)\eta(z)$, ее ряд Фурье не является четвертой степенью другого ряда Фурье.

Теперь рассмотрим рассекающие функции веса 3. Из условия $dim\ S_3(\Gamma_0(N),\ \chi)=1$ получим

$$\frac{2\mu_0(N)}{12} = \frac{1}{2} \cdot \mu_{\infty}(N) + 1.$$

Пусть l — четное. Из условия $dim\ S_{l+3}(\Gamma_0(N),\ \chi)=dim\ M_l(\Gamma_0(N)),$ получаем

$$\frac{3\mu_0(N)}{\mu_\infty(N)} = 12.$$

Из этих двух равенств получим $\mu_{\infty}(N)=6.$ Если $N=m^2\cdot n,$ то

$$\mu_{\infty}(N) = \prod_{p^{2l_p+1} \parallel n} 2 \cdot p^{l_p} \cdot \prod_{p^{l_p} \parallel m} p^{l_p} + p^{l_p-1} = 6.$$

Получим N=16 или $N=4p,\ p$ — нечетное. Размерность $dim\ S_3(\Gamma_0(4p),\ \chi)=1$ только для p=3. Для $N=12,\ 16$ существуют мультипликативные эта-произведения f(z), порождающие $S_3(\Gamma_0(N),\ \chi)$. Как и выше можно показать, что характер определяется однозначно.

Далее, если бы точное рассечение обеспечивалось параболической формой веса $k\geqslant 5,$ то выполнялось бы условие

$$\frac{k\mu_0(N)}{\mu_\infty(N)} = 12.$$

При нечетном $k \geqslant 5$ это невозможно.

Рассечение при условии $D_3 = 0$, $D_{1,\chi} < D_1$

Пусть $N = p_1^{k_1}...p_s^{k_s}$, так как характер χ нетривиален, то $k_j = 1$, но в этом случае $r_{p_j} = 1$, $2s_{p_j}$ может равняться 0 или 2, но в обоих случаях $D_{1,\chi}=D_1$. Учитывая свойства характеров, доказанные в пункте , получаем, что 4|N.

8.2.1. Уровни 4 и 8

Пусть $\tilde{\chi}$ — характер по модулю 2^{α} , тогда $\tilde{\chi}$ определяется значениями $\tilde{\chi}(-1)$ и $\tilde{\chi}(5)$, числа - 1 и 5 образующие $(\mathbf{Z}/\mathbf{2}^{\alpha}\mathbf{Z})^{*}$. [9].

Пространство $M_0(\Gamma_0(4))$ двумерно, его базис образуют функции $\frac{\eta^8(4z)}{n^4(2z)}$, $\frac{\eta^8(2z)}{n^4(4z)}$.

Рассмотрим характер

$$\chi_4(d) = \left\{ \begin{array}{rcl} 1, & d & \equiv & 1 & (4), \\ -1, & d & \equiv & 3 & (4). \end{array} \right.$$

Здесь $D_1=3,\ D_{1,\chi}=2.$ Пространство $S_5(\Gamma_0(4),\ \chi_4)$ одномерно и порождено мультипликативным эта-произведением $\eta^4(4z)\eta^2(2z)\eta^4(z)$. Пространство $S_3(\Gamma_0(4), \chi_4)$ одномерно и порождено мультипликативным эта-произведением $\eta^2(8z)\eta(4z)\eta(2z)\eta^2(z)$.

Имеем $\tilde{\chi}(-1) = -1$. Если $\tilde{\chi}(d) = -1$, при $d \equiv 5$ (8), то $D_1 = D_{1,\chi}$. Такую ситуацию мы сейчас не рассматриваем.

Остается единственный вариант

$$\tilde{\chi} = \begin{cases} -1, d \equiv 3 & (8), \\ 1, d \equiv 5 & (8), \\ -1, d \equiv 7 & (8). \end{cases}$$

B этом случае $\tilde{\chi} = \chi_4$.

Анализ других уровней N:4|N

Проанализируем условие $dim\ S_k(\Gamma_0(N),\ \chi) = 1,\ 4|N,\ D_{1,\chi} < D_1.$ Используя формулу размерности, получим оценку

$$2 \leqslant \frac{k\mu_0(N)}{\mu_\infty(N)} \leqslant 11.$$

В явном виде

$$2 \leqslant k \cdot m \cdot \prod_{p^{2l_p+1} \parallel n} \frac{p^{l_p}(p+1)}{2} \leqslant 11.$$

Проведя анализ элементарными методами, получим значения

k = 1, N = 4, 8, 16, 20, 24, 28, 32, 36, 40, 64, 72, 100;

k = 3, N = 4, 8;

k = 5, N = 4.

Покажем, что реализуются только два варианта, которые мы рассмотрели в предыдущем пункте:

k = 3, N = 8;

k = 5, N = 4.

Пусть N равняется одному из уровней $N=36,\ 32\ 24,\ 20.$ Если пространство $S_1(\Gamma_0(N),\chi)$ одномерно и порождено $g_N(z)$, то $g_N^2(z) \in S_2(\Gamma_0(N))$, но пространство $S_2(\Gamma_0(N))$ для этих уровней одномерно и порождено мультипликативными эта-произведениями. Если первый коэффициент функции $q_N(z)$ равен 1, то получим

 $g_{36}^2(z) = \eta^4(6z),$

 $\begin{aligned} g_{32}^{36(z)}(z) &= \eta^2(8z)\eta^2(4z), \\ g_{24}^2(z) &= \eta(12z)\eta(6z)\eta(4z)\eta(2z), \\ g_{20}^2(z) &= \eta^2(10z)\eta^2(2z). \end{aligned}$

Но если f(z) — мультипликативное эта-произведение, и $f(z) = g^2(z)$, то g(z) модулярной формой не является.

Пусть N = 40, 64, 72.

Пусть $S_1(\Gamma_0(N),\chi) = \langle g(z) \rangle$. Тогда функция $g(z) \in S_1(\Gamma_0(2N),\chi)$, но для каждого такого 2Nпространство $S_1(\Gamma_0(2N), \psi)$ порождается мультипликативным эта-произведением с характером ψ , тогда

$$\frac{g(z)}{f(z)} \in M_0(\Gamma_0(2N), \chi \cdot \psi^{-1}).$$

Если характер $\chi \cdot \psi^{-1}$ — тривиальный, то $g(z) = c \cdot f(z)$, что невозможно, так как у g(z) уровень N, а если этот характер нетривиален, то пространство $M_0(\Gamma_0(2N), \chi \cdot \psi^{-1})$ должно быть нулевым, но g(z) — ненулевая функция.

Рассмотрим уровни N = 4, 8, 16.

Если $S_1(\Gamma_0(N),\chi) = \langle g(z) \rangle$, то $g^2(z) \in S_2(\Gamma_0(32))$, но это пространство порождено $\eta^2(8z)\eta^2(4z)$, и корень из этой функции не является модулярной формой.

Пусть теперь N = 100.

Если N_1 — нечетно, и модуль χ не делится на 2, то в формуле для размерности $dim\ S_k(\Gamma_0(2^\alpha N_1,\chi))$ имеет место равенство $D_1=D_{1,\chi}$ в силу того, что значения $r_2=2,\ s_2;\ r_5=0,1,2,\ s_5=2.$

В заключение заметим, что так как $S_3(\Gamma_0(8), \chi_4)$ одномерно, то $S_3(\Gamma_0(8), \chi_4) = \{0\}$, так как оно было бы собственным подпространством.

9.3. Условие $D_3 \neq 0$.

В этом параграфе мы изучаем только нечетные уровни. Рассмотрим сначала уровень N=3. Пространство $S_k(\Gamma_0(3),(\frac{d}{3}))$ одномерно только при k=7. Вычисления размерностей показывают, что имеет место точное рассечение параболической формой веса 7 с указанным характером, которая, однако, не является эта-частным.

Далее $D_3 \neq 0$ в случае $N=p_1^{k_1}...p_s^{k_s}$ или $N=3\cdot p_1^{k_1}...p_s^{k_s}$, где $p_j\equiv 1(3)$. Если x — решение сравнения $x^2+x+1\equiv 0(N)$, то $x^3\equiv 1(N)$, $x\not\equiv 1(N)$. Тогда $\chi(x)=1$, иначе $\chi(1)=-1$, что невозможно. Учитывая информацию о характерах, получим $N=p_1...p_s$ или $N=3\cdot p_1...p_s$. В этом случае $D_1=D_{1,\chi}$, так как уровень не делится на 4. Вычисляем $D_1=D_3=D_{3,\chi}=2^s$.

Если имеет место точное рассечение и $dim\ S_1(\Gamma_0(N),\chi)=1$, то

$$dim\ S_3(\Gamma_0(N), \chi) = dim\ M_2(\Gamma_0(N)) \neq 0.$$

$$dim\ M_2(\Gamma_0(N)) = \frac{\mu_0(N)}{12} + \frac{1}{2} \cdot D_1 - \frac{1}{3} \cdot D_3,$$

$$dim \ S_3(\Gamma_0(N,\chi)) = \frac{2\mu_0(N)}{12} - \frac{1}{2} \cdot D_1 + \frac{1}{3} \cdot D_3,$$

получаем равенство

$$\frac{\mu_0(N)}{12} = 2^s - \frac{2}{3} \cdot 2^s = \frac{2^s}{3}.$$

$$\mu_0(N) = N \cdot \prod_{p|N} (1 + \frac{1}{p}) = 2^{s+2}.$$

Это равенство приводит к условию $(p_1+1)...(p_s+1)=2^{s+2}$, или $4(p_1+1)...(p_s+1)=2^{s+2}$. Это реализуется только при s=1, p=7.

Но на самом деле этот уровень соответствует другой ситуации: $dim\ S_3(\Gamma_0(N),(\frac{d}{7}))=1$. В этом случае имеет место точное рассечение мультипликативным эта-произведением $\eta^3(7z)\eta^3(z)$. Пространства меньших весов уровня 7 — нулевые.

Пусть далее $k \geqslant 5$, $k \equiv 1(3)$.

dim
$$S_k(\Gamma_0(N), \chi) = (k-1)(p_1-1)...(p_s-1) - 2^{s-1} = 1.$$

 $(k-1)(p_1-1)...(p_s-1) - 2^{s-1} = 1 + 2^{s-1}.$

Получаем неравенство из условия $p_i \geqslant 7$.

$$(k-1) \cdot 6^s \le 1 + 2^{s-1}.$$

 $(k-1) \cdot 3^s \le \frac{1}{2^s} + \frac{1}{2} \le 1.$

Получим противоречие. Аналогично исследуются остальные случаи: $k \equiv 0, \ 2(3)$ и $N \equiv 3 \cdot p_1...p_s$. возможностей точного рассечения здесь также нет.

9. Рассечение функциями четного веса

Известно, что $dim\ S_{12}(\Gamma)=1$. Значит, $\forall N>1,\ dim\ S_k(\Gamma_0(N))>1$. Следовательно, достаточно проверить веса $l\leqslant 12$. Если $dim\ S_2(\Gamma_0(p))>1$, то $dim\ S_k(\Gamma_0(N))>1$, $\forall k\geqslant 2$ и уровня N, делящегося на p. Поэтому для точного рассечения необходимым условием является $dim\ S_2(\Gamma_0(p))\leqslant 1$, где p — простой делитель уровня N. Это условие выполняется для $p=2,\ 3,\ 5,\ 7,\ 11,\ 17,\ 19$. Далее в таблице мы укажем все четные l и уровни N такие, что $dim\ S_l(\Gamma_0(N))=1$, и $dim\ S_k(\Gamma_0(N))=0$ при k< l. Если N_1 делится на $N,\ N_1>N$, то $dim\ S_l(\Gamma_0(N_1))>1$, и точное рассечение невозможно. Поэтому все приведенные в таблице случаи исчерпывают все возможности точного рассечения параболическими формами четного веса с тривиальным характером. Во всех случаях, кроме N=17,19 рассекающая функция — мультипликативное эта-произведение. Для уровней N=17,19 точное рассечение имеет место только для весов, указанных в теореме 6. Таким образом, все случаи рассмотрены, и теорема 6 доказана.

Таблица 2

N	Min l
11, 12, 14,15, 17, 19, 20, 27, 36	2
5, 8,9	4
3,4,7	6
2	8
1	12

Литература

- [1] Коблиц Н. Введение в эллиптические кривые и модулярные формы. М.: Мир, 1988. 320 с.
- [2] Кнэпп Э. Эллиптические кривые. М.: Факториал Пресс, 2004. 488 с.
- [3] Gordon B., Sinor D. Multiplicative properties of η -products // L.N.M. 1987. V. 1395. P. 173–200.
- [4] Ono K. The web of modularity: arithmetic of the coefficients of modular forms and q-series. A.M.S. Providence. 2004. 216 p.
- [5] Dummit D., Kisilevsky H., MacKay J. Multiplicative products of η- functions // Contemp. Math. 1985. V. 45.
 P. 89-98.
- [6] Voskresenskaya G.V. One special class of modular forms and group representations // Journal de Theorie des Nombres de Bordeaux. 1999. V. 11. P. 247–262.
- [7] Cohen H., Oesterle J. Dimensions des espaces de formes modulaires // LNM. 1976. V. 627. P. 69–78.
- [8] Воскресенская Г.В. Эта-функция Дедекинда в современных исследованиях // Итоги науки и техн. Сер.: Соврем. мат. и ее прил. Темат.обз. 2017. Т. 136. С. 103-137.
- [9] Чудаков Н.Г. Введение в теорию L функций Дирихле. М.: Гостехиздат, 1947. 204 с.
- [10] Biagioli A.J.F. The construction of modular forms as products of transforms of the Dedekind eta-function // Acta Arithm. 1990. V. LIV. N_2 4. P. 273–300.

References

- [1] Koblitz N. Vvedenie v ellipticheskie krivye i moduliarnye formy [Introduction in elliptic curves and modular forms]. M.:Mir, 1988, 320 p. [in Russian].
- [2] Knapp A. Ellipticheskie krivye [Elliptic curves]. M.: Faktorial Press, 2004, 488 p. [in Russian].
- [3] Gordon B., Sinor D. Multiplicative properties of η -products. L.N.M., 1987, Vol. 1395, pp. 173–200 [in English].
- [4] Ono K. The web of modularity: arithmetic of the coefficients of modular forms and q-series. A.M.S. Providence, 2004, 216 p. [in English].
- [5] Dummit D., Kisilevsky H., MacKay J. Multiplicative products of η- functions. Contemp.Math., 1985, Vol. 45, pp. 89–98 [in English].
- [6] Voskresenskaya G.V. One special class of modular forms and group representations. *Journal de Theorie des Nombres de Bordeaux*, 1999, Vol. 11, pp. 247–262 [in English].
- [7] Cohen H., Oesterle J. Dimensions des espaces de formes modulaires. LNM, 1976, Vol. 627, pp. 69–78 [in French].
- [8] Voskresenskaya G.V. Eta-funktsiia Dedekinda v sovremennykh issledovaniiakh [Dedekind's eta-function in modern investigations]. Itogi nauki i tekhn. Ser.: Sovrem. mat. i ee pril. Temat.obz. [Journal of Mathematical Sciences], 2017, Vol. 136, pp. 103–137 [in Russian].

- [9] Chudakov N.G. Vvedenie v teoriiu L funktsii Dirikhle [Introduction in Dirichlet L —functions]. M.:Gostekhizdat, 1947, 204 p. [in Russian].
- [10] Biagioli A.J.F. The construction of modular forms as products of transforms of the Dedekind eta-function. *Acta Arithm.*, 1990, Vol. LIV, no. 4, pp. 273–300 [in Russian].

G.V. Voskresenskaya³

MACKAY FUNCTIONS AND EXACT CUTTING IN SPACES OF MODULAR FORMS 4

In the article we consider structure problems in the theory of modular forms. The phenomenon of the exact cutting for the spaces $S_k(\Gamma_0(N),\chi)$, where χ is a quadratic character with the condition $\chi(-1) = (-1)^k$. We prove that for the levels $N \neq 3$, 17, 19 the cutting function is a multiplicative eta-product of an integral weight. In the article we give the table of the cutting functions. We prove that the space of an cutting function is one-dimensional. Dimensions of the spaces are calculated by the Cohen-Oesterle formula, the orders in cusps are calculated by the Biagioli formula.

Key words: modular forms, cusp forms, Dedekind eta-function, cusps, Eisenstein series, divisor of function, structure theorems, Cohen-Oesterle formula.

Статья поступила в редакцию 29/VI/2017. The article received 29/VI/2017.

³ Voskresenskaya Galina Valentinovna (galvosk@mail.ru), Department of Algebra and Geometry, Samara National Research University, 34, Moskovskoye shosse, 443086, Samara, Russian Federation.

⁴The work is performed with the financial support of the grant of the Russian Foundation for Basic Research 16-01-00154A.