УДК 517.9

ЗАДАЧА НА СОБСТВЕННЫЕ ЗНАЧЕНИЯ ДЛЯ ОПЕРАТОРА ЛАПЛАСА СО СМЕЩЕНИЯМИ В ПРОИЗВОДНЫХ

© 2014 А.В. Герасимов, Б.В. Логинов, Н.Н. Юлдашев³

Дана постановка задачи определения собственных и присоединенных функций для оператора Лапласа в s-мерном единичном шаре со смещением в производных. При s=2 получены условия существования присоединенных функций не выше третьего порядка и выполнено их вычисление. Случай произвольного s является предметом будущей работы.

Ключевые слова: оператор Лапласа, единичный шар в R^s , собственные значения, собственные и присоединенные функции при s=2.

В классе непрерывных и непрерывно дифференцируемых функций до второго порядка включительно в s-мерном единичном шаре в R^s задача определения собственных и присоединенных функций для оператора Лапласа со смещениями в производных определяется условиями $(\Delta + \lambda)u = \frac{1}{r^{s-1}}\left(\frac{\partial}{\partial r}r^{s-1}\frac{\partial u}{\partial r}\right) + \frac{1}{r^2}\Delta_\Theta u + \lambda u = 0,\ u \in C^{2+\alpha}(\Omega),\ u_r'(r_0,\Theta) = u_r'(1,\Theta),\ 0 < r_0 < 1,\ \Omega = \{r,\Theta|r < 1,\Theta = (\Theta_1,\dots,\Theta_{n-1})\},\ где\ \Delta_\Theta$ — оператор Лапласа на единичной сфере S^{s-1} . Разделяя переменные $u(r,\Theta) = X(r)Y(\Theta),$ получаем уравнение для полисферических функций, а при подстановке $X(r) = r^{-\frac{s}{2}+1}x(r)$ уравнение Бесселя $x''(r) + \frac{1}{r}x' + \left[\lambda - \frac{1}{r^2}(n + \frac{s}{2} - 1)^2\right]x = 0.$ В предположении ограниченности решения смещение определяет собственные значения $\lambda = \alpha^2 = \alpha^2(n)$ как корни уравнения $f(\alpha) = \alpha\left[r_0^{-\frac{s}{2}+1}J_{n+\frac{s}{2}-1}'(\alpha r_0) - J_{n+\frac{s}{2}-1}'(\alpha)\right] + \left(1 - \frac{s}{2}\right)\left[r_0^{-\frac{s}{2}}J_{n+\frac{s}{2}-1}(\alpha r_0) - J_{n+\frac{s}{2}-1}(\alpha)\right] = 0.$ Если функция $v(r,\Theta)$ имеет непрерывные вторые производные в подобластях от α до α то пориолизисть функция α но α непрерывные в производные в подобластях от α непрерывние α непрерывные в подобластях от α не α непрерывние α непрерывные α непрерывные α непрерывные α непрерывные α непрерывные α не α непрерывные α непрерывние α не α

Если функция $v(r,\Theta)$ имеет непрерывные вторые производные в подобластях Ω_{r_0} и $\Omega\setminus\Omega_{r_0}$, то периодичность функции u по Θ , непрерывность и непрерывная дифференцируемость ее всюду в Ω и смещение определяют сопряженную задачу $(\Delta+\lambda)v=0$ в $\Omega_{r_0}\cup(\Omega\setminus\Omega_{r_0}),\ v_r'(r_0-0,\Theta)=v_r'(r_0+0,\Theta),\ v_r'(1,\Theta)=0, r_0^{s-1}[-v(r_0+0,\Theta)+v(r_0-0,\Theta)]+v(1-0,\Theta)=0.$

Замечание 1. Условия сопряженной задачи возникают, если в прямой задаче вместо $u \in C^{2+\alpha}(\Omega)$ предположить только $u \in C^{2+\alpha}(\Omega_{r_0}) \cup C^{2+\alpha}(\Omega \setminus \Omega_{r_0})$.

Далее для простоты представления приведены результаты только в прямой задаче при s=2. Использованы справочные издания [1-4].

¹Герасимов Артем Викторович (gerasimov_artyom@mail.ru), кафедра прикладной математики Мордовского государственного университета им. Н.П. Огарева, 430005, Российская Федерация, г. Саранск, пр. Ленина, 15.

²Логинов Борис Владимирович (bvllbv@yandex.ru), кафедра высшей математики Ульяновского государственного технического университета, 432027, Российская Федерация, г. Ульяновск, ул. Северный Венец, 32.

³Юлдашев Нурилла Нигматович (nurilla1956@mail.ru), кафедра высшей математики Ташкентского института текстильной и легкой промышленности, 100100, Республика Узбекистан, г. Ташкент, ул. Шохжахон, 5.

Теорема 1. Прямая задача имеет собственные значения $\lambda_n = \alpha^2 = \alpha^2(n)$, определяемые условием $f(\alpha) = J_n'(\alpha) - J_n'(\alpha r_0) = 0$ с собственными функциями $\Phi_n^{(1)}(r,\Theta) = J_n(\alpha r)(c_{n1}\cos n\Theta + c_{n2}\sin n\Theta)$. Ей отвечает сопряженная задача $(\Delta + \lambda)v = 0$ $v \in C^{2+\alpha}(\Omega_{r_0}) \cup C^{2+\alpha}(\Omega \setminus \Omega_{r_0}), \ v_r'(r_0 - 0,\Theta) = v_r'(r_0 + 0,\Theta), \ v_r'(1,\Theta) = 0, \ v(1,\Theta) + r_0[v(r_0 - 0,\Theta) - v(r_0 + 0,\Theta)] = 0$ с теми же собственными значениями и собственными функциями $\Psi_n^{(1)}(r,\Theta) = \mathcal{X}_n^{(1)}(r)(d_{n1}\cos n\Theta + d_{n2}\sin n\Theta)$,

$$\mathcal{X}_n^{(1)}(r) = D \left\{ \begin{array}{ll} \left[N_n'(\alpha r_0) - N_n'(\alpha) \right] J_n(\alpha r), & 0 \leqslant r < r_0, \\ J_n'(\alpha) N_n(\alpha r) - N_n'(\alpha) J_n(\alpha r), & r_0 < r \leqslant 1. \end{array} \right.$$

Условие отсутствия (существования) присоединенных элементов $\Phi^{(2)}(r,\Theta)=$ $=X_n^{(2)}(r)(c_{n1}\cos n\Theta + c_{n2}\sin n\Theta)$ с точностью до ненулевого множителя (обозначается \cong) имеет вид $I_n^{(1)}(\alpha)=\int\limits_0^1 \rho X_n^{(1)}(\rho)\mathcal{X}_n^{(1)}(\rho)d\rho$ \cong \cong $(n^2-\alpha^2)\,r_0J_n(\alpha)+(r_0^2\alpha^2-n^2)\,J_n(\alpha r_0)\cong f'(\alpha)\neq 0$ (=0). Теорема 2. Пусть $f(\alpha)=0$ и $f'(\alpha)=0$. Тогда $X_n^2(r)$ определяется как

Теорема 2. Пусть $f(\alpha)=0$ и $f'(\alpha)=0$. Тогда $X_n^2(r)$ определяется как ограниченное решение неоднородного уравнения Бесселя $X^{(2)''}(r)+\frac{1}{r}X^{(2)'}(r)+\frac{$

Доказательство выполняется методом Лагранжа вариации произвольных постоянных отдельно в подобластях Ω_{r_0} и $\Omega \setminus \Omega_{r_0}$ с последовательным использованием сопровождающих граничных условий.

Теорема 3. Одновременное выполнение условий $f^{(k)}(\alpha) = 0, \ k = 0, 1, 2, 3$ невозможно.

Доказательство выполняется исследованием системы

$$f'(\alpha) = 0 \sim (n^2 - \alpha^2) r_0 J_n(\alpha) + (r_0^2 \alpha^2 - n^2) J_n(\alpha r_0) = 0,$$

$$f''(\alpha) = 0 \sim -2J_n(\alpha) + 2r_0 J_n(\alpha r_0) + \alpha (r_0^2 - 1) J'_n(\alpha) = 0,$$

$$f'''(\alpha) = 0 \sim (n^2 - \alpha^2) J_n(\alpha) + 2\alpha J'_n(\alpha) = 0.$$

Следствие. Жордановы цепочки прямой задачи обрываются на третьем элементе, т. е. имеют длину три.

Действительно, система $f'(\alpha)=0,\ f''(\alpha)=0$ разрешима, т. к. ее определитель $\Delta_{12}=n^2\left(r_0^2-1\right)\neq 0.$

Теперь в условиях $f(\alpha)=0,\ f'(\alpha)=0,\ f''(\alpha)=0$ выполним вычисление $X_n^{(3)}(r),$ являющегося решением неоднородного уравнения Бесселя с правой частью $-\frac{r}{2\alpha}J_n'(\alpha)$ и теми же условиями смещения и гладкости. Действуя по Лагранжу, определим

$$X_n^{(3)}(r) = \begin{cases} C_{11}^{(3)}(r)J_n(\alpha r) + C_{12}^{(3)}(r)N_n(\alpha r), & 0 \leqslant r < r_0, \\ C_{21}^{(3)}(r)J_n(\alpha r) + C_{22}^{(3)}(r)N_n(\alpha r), & r_0 \leqslant r < 1, \end{cases}$$

$$\text{ р.д. } C_{120}^{(3)} = 0, \quad C_{11}^{(3)}(r) = \frac{\pi}{4\alpha}\int\limits_0^r \rho^3 N_n(\alpha \rho)J_n'(\alpha \rho)d\rho = \frac{\pi r^3}{8\alpha^2}J_n(\alpha r)N_n(\alpha r) - \frac{3\pi}{8\alpha^2}\int\limits_0^r \rho^2 J_n(\alpha \rho)N_n(\alpha \rho)d\rho - \frac{r^3}{12\alpha^2} + C_{110}^{(3)}, \quad C_{12}^{(3)}(r) = -\frac{\pi}{8\alpha^2}\int\limits_0^r \rho^3 dJ_n^2(\alpha \rho) = -\frac{\pi}{8\alpha^2}\int\limits_0^$$

$$=-\frac{\pi r^3}{8\alpha^2}J_n^2(\alpha r)+\frac{3\pi}{8\alpha^2}\int\limits_0^r \rho^2 J_n^2(\alpha \rho) d\rho, \text{ а на интервале } r_0\leqslant r<1\ C_{21}^{(3)}(r)=0$$

$$=\frac{\pi}{4\alpha^2}\int\limits_{r_0}^r \rho^3 N_n(\alpha \rho) dJ_n(\alpha \rho)=\frac{\pi r^3}{8\alpha^2}J_n(\alpha r)N_n(\alpha r)-\frac{\pi r^3}{8\alpha^2}J_n(\alpha r_0)N_n(\alpha r_0)-\frac{\pi r^3}{8\alpha^2}J_n(\alpha r_0)N_n(\alpha r_0)+C_{210}^{(3)},\ C_{22}^{(3)}(r)=-\frac{\pi}{8\alpha^2}\int\limits_{r_0}^r \rho^3 dJ_n^2(\alpha r_0)=0$$

$$=-\frac{\pi}{8\alpha^2}r^3J_n^2(\alpha r)+\frac{\pi}{8\alpha^2}r_0^3J_n^2(\alpha r_0)+\frac{3\pi}{8\alpha^2}\int\limits_{r_0}^r \rho^2 J_n^2(\alpha \rho) d\rho+C_{220}^{(3)}.\ \text{Отметим, что}$$
формула для вычисления интеграла $\int \rho^2 J_n(\alpha \rho)N_n(\alpha \rho) d\rho$ в справочных изданиях отсутствует, а для вычисления интеграла $\int \rho^2 J_n^2(\alpha \rho) d\rho$ имеется рекуррентная формула. Условие непрерывности $X^{(3)}$ дает $C_{110}^{(3)}-C_{210}^{(3)}=\frac{N_n(\alpha r_0)}{J_n(\alpha r_0)}C_{220}^{(3)}+\frac{r_0^3}{12\alpha^2}-\frac{3\pi}{8\alpha^2}\frac{N_n(\alpha r_0)}{J_n(\alpha r_0)}\int\limits_0^r \rho^2 J_n^2(\alpha \rho) d\rho+\frac{3\pi}{3\alpha^2}\int\limits_0^r \rho^2 J_n(\alpha \rho)N_n(\alpha \rho) d\rho,$ а из непрерывной дифференцируемости $X^{(3)}$ при $r=r_0$ следует $C_{110}^{(1)}-C_{210}^{(3)}=\frac{N_n(\alpha r_0)}{J_n(\alpha r_0)}C_{220}^{(3)}+\frac{r_0^3}{12\alpha^2}+\frac{\pi r_0^3}{8\alpha^2}J_n^2(\alpha r_0)N_n(\alpha r_0)-\frac{\pi r_0^3}{3\alpha^2}J_n(\alpha r_0)N_n(\alpha \rho) d\rho+\frac{3\pi}{8\alpha^2}J_n^2(\alpha r_0)N_n(\alpha r_0)-\frac{\pi r_0^3}{3\alpha^2}J_n(\alpha r_0)N_n(\alpha r_0)+\frac{3\pi}{8\alpha^2}J_n^2(\alpha r_0)N_n(\alpha r_0)-\frac{\pi r_0^3}{3\alpha^2}J_n(\alpha r_0)N_n(\alpha r_0)+\frac{3\pi}{8\alpha^2}J_n^2(\alpha r_0)-\frac{\pi r_0^3}{3\alpha^2}J_n^2(\alpha r_0)-\frac{\pi$

Если не исследовать предельную задачу при $r_0 \to 0$, а просто подставить найденные значения постоянных $C_{110}^{(3)}$, $C_{210}^{(3)}$ и $C_{220}^{(3)}$ в формулу для $X^{(3)}(r)$, то получаем следующий результат.

Теорема 4. В условиях $f^{(k)}(\alpha)=0,\ k=0,1,2,$ третий элемент жордановой цепочки $X_n^{(3)}(r)$ имеет вид

$$X_n^{(3)}(r) = -\frac{r^3 J_n(\alpha r)}{12\alpha^2} - \frac{3\pi}{8\alpha^2} J_n(\alpha r) \int_0^r \rho^2 J_n(\alpha \rho) N_n(\alpha \rho) d\rho + \frac{3\pi}{8\alpha^2} N_n(\alpha r) \int_0^r \rho^2 J_n^2(\alpha \rho) d\rho.$$

Замечание 2. Отметим расчеты [5;6], где исследована соответствующая задача со смещениями в искомых функциях.

Замечание 3. Общий случай s>2 является предметом будущей работы.

Литература

- [1] Бейтмен Г., Эрдейи А. Высшие трансцендетные функции. Функции Бесселя, функции параболического цилиндра, ортогональные многочлены. М.: Наука, 1966. 296 с.
- [2] Виленкин Н.Я. Специальные функции и теория представлений групп. М.: Наука, 1965. 585 с.
- [3] Прудников А.П., Брычков Ю.А., Маричев О.И. Интегралы и ряды. Специальные функции. М.: Наука, 1983. 780 с.
- [4] Абрамовиц М., Стиган И. Справочник по специальным функциям. М.: Наука, 1979.832 с.
- [5] Логинов Б.В., Нагорный А.М. Об одной краевой задаче для уравнения Гельмгольца со смещениями внутри области // Уравнения смещанного типа и задачи со свободной границей. 1987. № 4. С. 170–182.
- [6] Логинов Б.В., Нагорный А.М. О спектре одной задачи Бицадзе Самарского // Дифференциальные уравнения. 1988. Т. 24. № 11. С. 2012–2016.

References

- [1] Bateman H., Erdelyi A. Higher transcendental functions. M.: Nauka, 1966. 296 p.
- [2] Vilenkin N.Ya. Special functions and group representation theory. M.: Nauka, 1965.585 p.
- [3] Prudnikov A.P., Brychkov Yu.A., Marichev O.I. Integrals and series. Special functions. M.: Nauka, 1983. 780 p.
- [4] Abramovitz M., Stegun I.A. Handbook on special functions. M.: Nauka, 1979. 832 p.
- [5] Loginov B.V., Nagorny A.M. On a boundary value problem for Helmholtz equation with displacements within domain // Mixed-type equations and free boundary problems. 1987. № 4. P. 170–182.
- [6] Loginov B.V., Nagorny A.M. On the spectrum of a problem of Bitsadze Samarskiy // Differential equations. 1988. V. 24. N 11. P. 2012–2016.

Поступила в редакцию 18/XI/2013; в окончательном варианте — 19/XII/2013.

EIGENVALUE PROBLEM FOR THE LAPLACE OPERATOR WITH DISPLACEMENT IN DERIVATIVES

© 2014 A.V. Gerasimov, B.V. Loginov, N.N. Yuldashev⁶

The statement of the problem on the determination of eigen- and adjoint-functions for Laplace operator in s-dimensional unit ball with displacement in derivatives is given. For s=2 the conditions are obtained for the existence of adjoint functions of the not higher than three order and their computation is made. The case of arbitrary s is the subject of future work.

Key words: Laplace operator, unit ball in \mathbb{R}^s , eigenvalues, eigen and adjoint functions for s=2.

Paper received 18/XI/2013. Paper accepted 19/XII/2013.

⁴Gerasimov Artyom Viktorovich (gerasimov_artyom@mail.ru), the Dept. of Applied Mathematics, Ogarev Mordovia State University, Saransk, 430005, Russian Federation.

⁵Loginov Boris Vladimirovich (bvllbv@yandex.ru), the Dept. of Higher Mathematics, Ulyanovsk State Technical University, Ulyanovsk, 432027, Russian Federation.

⁶Yuldashev Nurilla Nigmatovich (nurilla1956@mail.ru), the Dept. of Higher Mathematics, Tashkent Institute of Textile and Light Industry, Tashkent, 100100, Uzbekistan Republic.