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ABSTRACT

The solvability condition and the unique exact solution by the universal factorization (decomposition)
method for a class of the abstract operator equations of the type

Biu= Au— S®(Apu) — GF(Au) = f, u € D(By),

where A, Ag are linear abstract operators, GG,S are linear vectors and ®,F are linear functional vectors
is investigagted. This class is useful for solving Boundary Value Problems (BVPs) with Integro-Differential
Equations (IDEs), where A, Ay are differential operators and F(Au), ®(Apu) are Fredholm integrals. It was
shown that the operators of the type B; can be factorized in the some cases in the product of two more
simple operators Bg, Bg, of special form, which are derived analytically. Further the solvability condition
and the unique exact solution for Byu = f easily follow from the solvability condition and the unique exact
solutions for the equations Bgv = f and Bg,u = v.
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1. Initial Position

Integro-differential equations play an important role in characterizing many physical, biological, social
and engineering problems and are often solved by factorization (decomposition) methods. The factorization
methods have applications in biology, ecology, population dynamics, mathematics of financial derivatives,
quantum physics, hydrodynamics, gas dynamics, in transport theory, electromagnetic theory, mechanics
and chemistry [1-10]. Factorization Methods successfully are used in pure mathematics for solving linear
and nonlinear ordinary and partial differential and Volterra-Fredholm integro-differential equations, integro-
differential equations of fractional order, fuzzy Volterra-Fredholm integral equations and delay differential
equations [11-20]. There are well-known decomposition (factorization) methods: Domain decomposition
method, the natural transform decomposition method, the Adomian decomposition method, Modified Adomian
decomposition method and the Combined Laplace transform-Adomian decomposition method, which use the
so-called Adomyan polynomials or iterations to obtain an n-term approximation of solution, whereas the
proposed in this paper factorization method gives the unique exact solution in the closed form. Furthermore
it is universal because can be applied in the investigation of Fredholm integro-differential equations, both
ordinary and partial.

There are many papers are devoted to investigation of the uniqueness of the solution to nonlocal boundary
value problems with integral boundary conditions for hyperbolic differential equation [21-25]. Finding of the
exact solution in the general case is the difficult task. We by the universal factorization method find the
solvability condition and a unique solution to a nonlocal BVP with integral boundary conditions for Fredholm
ordinary integro-differential and integro-hyperbolic differential equations of the type Byu = f. It is the aim of
this paper to reappraise the factorization method for integro-differential equations of type Byu = f. This paper
is a generalization of the article [26], where by factorization method were stydied the solvability condition and
a unique solution to the correct self-adjoint abstract equation of the type Biu = f in terms of a Hermitian
matrix in a Hilbert space.

The quadratic factorization methods was applied to some BVPs with integro-differential equations in the
case of a Banach space in [27-29].

It is well known that the class of the operators which can be factorized as a superposition of two more
simple operators is not wide. But if the operator can be factorized, then the solvability condition and the
solution of the given problem are essentially simpler than in the general case without factorization. The
paper is organized as follows. In Section 2 we develop the theory for the solution of the problem Byx = f
when B; = BBj. Further by factorization method we solve a nonlocal boundary value problem with integral
boundary conditions for Fredholm integro-hyperbolic differential equation. Finally, we give two examples of
integro-differential equations demonstrating the power and usefulness of the methods presented.
Throughout this paper we use the following terminology and notation. By X,Y we denote the complex
Banach spaces and by X* the adjoint space of X, i.e. the set of all complex-valued linear and bounded
functionals on X. We denote by f(u) the value of f on uw € X. We write D(A) and R(A) for the domain
and the range of the operator A : X — Y, respectively. An operator As is said to be an extension of
an operator A;, or A; is said to be a restriction of As, in symbol A; C As, if D(A2) O D(A;) and
Az = Agx, for all © € D(A;). An operator A : X — Y is said to be injective or uniquelly solvable if
for all uy,us € D(A) such that Au; = Aug, follows that u; = wus. Remind that a linear operator A is
injective if and only if ker A = {0}. An operator A : X — Y is called surjective or everywhere solvable if
R(A) =Y. The operator A: X — Y is called bijective if A is both injective and surjective. Lastly, A is said
to be correct if A is bijective and its inverse A~! is bounded on Y. If g; € X and ¥; € X*,i=1,...,m,
then we denote by g = (g1,..-,9m), ¥ =col(¥y,...,¥,,) and ¥(u) =col(¥y(u),...,¥n(u)) and write
g€ Xy, VeX!. Wewil denote by ¥(g) the m x m matrix whose ¢,j-th entry ¥;(g;) is the value of
functional ¥; on element g;. Note that ¥(gC) = ¥(g)C, where C is a m x k constant matrix. We will also
denote by 0,, the zero and by I,, the identity m xm matrices. By 0 we will denote the zero column vector.

2. Factorization of integro-differential equations in a Banach space

We remind first the following Theorem 1 from [29].
Theorem 2.1. Let A be a bijective operator on a Banach space X, the components of the vectors G =
= (g1, -, 9m), F = col(Fy,...Fy,) arbitrary elements of X and X*, respectively and the operator Bg : X — X
be defined by
Bou = Au— GF(Au) = f, D(Bg)= D(4), fe€X. (2.1)

Then the following statements are true:
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(i) The operator Bg is bijective on X if and only if
det L = det[I,, — F(G)] # 0, (2.2)
and the unique solution to boundary value problem (2.1), for any f € X, is given by the formula
u=Bg'f=A""f+ A'G[L, — F(G)'F(f). (2.3)

(i1) If in addition the operator A is correct, then Bg is correct.

Now, by using the above theorem we prove the following theorem which is useful for solving integro-
differential equations by factorization method.
Theorem 2.2. Let X be a Banach space, the vectors Gy = (glo),. ,gSZ)), G=1(g1,,9m), S = (81,.+y8m) €
X™, the components of the vectors F = col(Fy, ..., Fy,) and ® = col(¢1, ..., ¢m) belong to X* and the operators
Bg,,Bag,B1: X — X defined by

BGOU = AQU - GO(I)(A()U) = f, D(BGO) = D(Ao), (24)
Bgu = Au — GF(Au) = f, D(Bg) = D(A), (2.5)
Blu = AA()U - S(I)(AQU) - GF(AA()U) f, D( ) (AA(]) (26)

where Ag and A are linear correct operators on X and Gy € D(A)™. Then the following statements are
satisfied:
(i) If

S € R(Bg)™ and S = BgGo= AGy— GF(AGy), (2.7)

then the operator By can be factorised in By = BgBg,.-

(i) If in addition the components of the vector ® = (®q,...,P,,) are linearly independent elements of X* and
the operator By can be factorised in By = BgBg,, then (2.7) is fulfilled.

(i1i) If the operator By can be factorised in By = BgBg,, then By is correct if and only if the operators
Bg, and Bg are correct which means that

det Lo = det[L,, — ®(Go)] #0 and det L = det[l,, — F(G)] # 0. (2.8)
(iv) If the operator By has the factorization in By = BgBg, and is correct, then the unique solution of (2.6)
18
=Bi'f= Aj'ATUf + [AJTATIG + AJ ' GoLy ' @(ATIG)] x
xL7VF(f) + Ay GoLy '®(A~1f). (2.9)
Proof. (i) Taking into account that Gp € D(A)™ and (2.4)—(2.6) we get
D(BgBGO) = {u S D(BGO) : BGOU S D( )} =
={u € D(Ao) : Agu — Go®(Aou) € D(A)} =
= {u S D(Ao) : Aou € D( )} D(AA()) (Bl)
So D(B;) = D(BgBg,)- Let y = Bg,u. Then for each u € D(AAp) since (2.5) and (2.4) we have
BgBg,u = Bgy = Ay — GF(Ay) =
= A[Aou - GQ@(A()U)] - GF (A[Aou - GO(I)(A()U)D

= AA()U - BgGO (Aou) (AAQU,),

where the relation BgGo = AGy — GF(AG,) follows from (2.5) if instead of u we take Gy. By comparing
(2.10) with (2.6), it is easy to verify that Byu = BgBg,u for each u € D(AAg) if a vector S satisfies (2.7).
(ii) Let the operator B; can be factorized in B; = BgBg,. Then by comparing (2.10) with (2.6) we obtain

(BaGo — S)P(Agu) = 0. (2.11)
Because of the correctness of operators A, Ay and the linear independence of @4, ..., ®,,, there exists a system
ULy ory U € D(AAp) such that ®(Agug) = I, where ug = (u1, ..., U, ). By substituting u = ug into (2.11) we
get S = BgGp. Hence S € R(Bg)™ and S = BgGo= AGy — GF(AGy).
(iii) Let the operator B; be defined by (2.6) where S = BgGy. Then Equation (2.6) can be equivalently
represented in matrix form:

=f (2.12)

-1
Biu = Adogu — (BsGo, G) < oA~ Adou) )
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or

Byu=Au— GF(Au) = f, D(B;) = D(A), (2.13)

F(v) F(v)
operator A = AAq is correct, because of A and Ag are the correct operators and that the functional vector
F is bounded, since the vector ® is bounded as a superposition of a bounded functional ® and a bounded
operator A~'. Then we apply Theorem 2.1. By this theorem the operator B is correct if and only if

det Ly = det[ly, — F(G)] = det K é;"n ?:: ) - ( ?((gggz)) gj((g)) )} _

. z —1
where A = AAy, G = (BgGo,G), F =col(®,F), F(v)= ( & (v) ) = ( ®(A™ ) ) Notice that the

~ det ( I, — ®(AGy — GF(AGy)) —9(G) ) _
—[F(AGy — GF(AGy))] I — F(G)
et ( Iy — ®(Go — A"\GF(AGo)) —®(A™'G) )

—[F(AGy — GF(AGy))] I, — F(G)
- L — ®(Gy) + B(A-1G)F(AGy) —D(A1G)
= det ( CP(AGo) 1 F(G)F(AGo) I, - F(C) ) 7 0.

Multiplying from the left the elements of the second column by F(AG,) and adding to the corresponding
elements of the first column of the determinant L;, by Remark 1, [31] we get

_ I, — ®(Gy) —9(A7'G)
det L1 = det ( 0, I — F(Q)
=det Lodet L # 0.

) = det[I,, — B(Gy)] det[I,, — F(G))

So we proved that the operator B is correct if and only if (2.8) is fulfilled.
(iv) Let uw € D(AAy) and BgBg,u = f. By Theorem 2.1 (ii) since Bg, Bg, are correct operators, we obtain

Bgyu=Bg'f = A" f+ AT'\GL'F(f),
u=Bg (A7 f+ATIGLT'F(f)).
In the last equation we denote by g = A7'f + A"'GL'F(f). Bu using again Theorem 2.1 (ii), with
Ag, Go, @, Lg, in place of A, G, F, L respectively, we get
u=Bglg=A7"g+ AJ'GoLy'®(g) = Ay (A7 f + ATIGLTYF(f)) +
+AG'GoLg '@ (A7 f + ATIGLTIF(f)) = Ay AT f + AgPATIGLTIF(f)+
A7 GoLy [B(A1 ) + B(ATIG)LLE ()]
which implies (2.9). The theorem is proved. o
The next theorem is useful for applications.

Theorem 2.3. Let the space X and the vectors F,® be defined as in Theorem 2.2, the wvectors G =
=(g1y-y9m), S = (81, .-, 8m) € X™ and the operator By : X — X by

Biu=Au — S®(Apu) — GF(Au) = f, x € D(By) (2.14)
where Ag : X — X is a correct m-order differential operator and A is a n-order differential operator, m < n.

Then the next statements are fulfilled:
(i) if there exist a m —m order differential operator A: X — X, such that

and a vector Gy € D(A), satisfying
AGy — GF(AG,) = S, (2.16)

then the operator By can be factorized into By = BgBg,, where Bg, and Bg are given by (2.4) and (2.5)
respectively, Bg is determined by A and G, F from (2.14), (2.15) and lastly, the operator Bg, by Ao, ® and
Go from (2.14) and (2.16),

(i1) if there exists a bijective n —m order differential operator A: X — X, satisfying (2.15) and

det L = det[l,,, — F(G)] # 0, (2.17)

then the operator By is factorized in By = BgBg,, where the operators Bg,, Ba,
Ao, A, the vectors G,F,® are determined as in (i) and

Go=A"'S+ A'GLT'F(S). (2.18)
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(i1i) if in addition to (ii) A is correct, then By is correct if and only if
det Lo = det[I,, — ®(Go)] = det[I,, — B(A~'S) — (A 'G)L~'F(S)] £ 0, (2.19)

and the problem (2.14)-(2.16) has the unique solution given by (2.9).
Proof (i) If there there exist a n—m order differential operator A and a vector Gy satisfying (2.15) and
(2.16), then from (2.14) we get

From (2.20) we take a triple of elements, the operator A and vectors G, F, and construct the operator Bg
according to the formula (2.5). To determine the operator Bg, by formula (2.4), we take from (2.20) the
operator Ap and the vector ®, whereas as Gy we take any solution Gy of Equation (2.16). We proved in
the previous theorem (i) that D(BgBg,) = D(AAp) = D(Bp). Substituting (2.16) into (2.20), for every
u € D(B;1) we get

B1U = AA()U - [AGO - GF(AG())] <I>(A0u) - GF(AA()U) = BGA()’LL - BGGO(I)(A()’LL) =
== BG [Aou - GO(I)(A()’U,)] == BgBGO’LL.

Thus Bl = BgBGO.

(ii) As in the proof of (i) we construct the operators Bg, Bg,. By Theorem 2.1, since (2.17), the operator
Bg is correct and Equation (2.16) can be presented by BgGo = S. Then Gy = BC_;lS. The last equation by
Corollary 2.1, implies the unique vector Gy by (2.18). Further as in the proof of (i) we get the factorization
By = BgBg,, where Bg, is unique.

(iii) If (2.17), (2.18) hold true, then by statements (i), (ii), By can be factorized in B; = BgBg,. By Theorem
2.2 (iii), Bj is correct if and only if (2.8) holds or, taking into account (2.17) and (2.18), if and only if
det Ly = det[l,, — ®(Gp)] # 0, or if and only if (2.19) is fulfilled. The last inequality immediately follows
by substitution (2.18) into det Lo = det[l,,, — ®(Gp)]. Since B; is correct and factorized in By = BgBg,,
by Theorem 2.2 (iv), we obtain the unique solution (2.9) to the problem (2.14)-(2.16). So the theorem is
proved. a
Example 2.4. Let u(z) € C?[0,1]. Then the problem

u'(t) — ¢ [t (8)dt — ¢ [ u” (t)dt = 2t + 1, (2.21)
u(0) +u(l) =0, «/(0)—2u/(1) =0,
is correct on C[0,1] and its unique solution is given by the formula
ult) = 261377 — 665232t 4 103608¢2 + 30080¢% + 8790¢*
B 207216 '

Proof. First we need to find the operators Bi, A, Ay and check the condition D(B;1) = D(AAp). If we
compare equation (2.21) with equation (2.14), (2.15), it is natural to take

(2.22)

Bru(t) = u"(t) — t [} tu' (t)dt — ¢ [ t3u” (t)dt = 2t + 1, (2.23)
D(By) = {u(t) € C?[0,1] : u(0) + u(1) =0, '(0) — 2u/(1) = 0},

Au = AAou = u''(t),

D(By) = {u(t) € C?[0,1] : u(0) + u(1) =0, /(0) —2u/(1) = 0}, (2.24)
Aou(t) =u'(t), D(Ap) = {u(t) € C*0,1] : u(0) = —u(1)},
B(Agu) = / (it F(Adgu) = / by, (2.95)
0 0

n

=t, G =12 Denote Agu(t) =u'(t) =y(t) =y. Then from (2.24) we have y € D(A), AAou= (v'(t)) =
=y'(t) = Ay(t), y(0)—2y(1) =0. So we proved that

Ay=y'(t), D(A)={y(t) € C'[0,1] : y(0) — 2y(1) = 0}.
Then by definition
D(AAy) = {u(t) € D(Ap) : Aou(t) € D(A)} =
= {u(t) € C'0,1] : u(0) = —u(1), '(t) € C*0,1], u'(0) — 2u/(1) = 0} =
={u(t) € C?10,1] : u(0) + u(1) =0, ' (0) —2u'(1) =0} = D(By).
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So D(B;) = (AAO) It is easy to verify that the operators A, Ay are correct on C[0,1] and for every
f(t) € C[0,1] the corresponding inverse operators are defined by
_ 1
ATYF@) = ) f(s)ds —2 [y f(s)ds, (2.26)
_ t 1
A ) = [y f(s)ds — 5 [y f(s)ds. (2.27)
From (2.25) we have
1 1
of) = [ st P = [ 1 (2.28)
0 0

Then F(G)= fol s’s?ds =, F(S) = fol sPsds = L,
det L = det[I,,, — F(G)]=1-1/6=5/6, L '=6/5,

t 1 t2 t 1 t3 2
ATLS = sds—?/ sds = — — 1, AilG:/ 52d5—2/ s?ds = — — 2,
0 0 2 0 0 3 3

Go=A"'S+ A 'GL'F(S) = ﬁ—1+ Po2)61_ 1(4t3+25t2 58).
0 2 55 50
Taking into account (2.28) we obtain
1! 439
®(Gy) = — 45% + 2552 — 58)ds = ———.
(Go) 50/05(5+5 Jds = =500

Since det Lo = det[I,, — ®(Go)] = 1532 # 0 then, by Theorem 2.3 (iii), Problem (2.23) or (2.21) is correct.
By (2.27) we calculate

73 29t 3 4 7 2t t*
AglGo= — - — + -4+ =, AJ'A7'G=— -+
0 C0= 150 "5 T T o 21 3 12
and for f(¢t) =2t+1 by (2.26)-(2.28) we obtain
19 2 3 13 17
AN = A4t +12, AJ'ATf=— — 4t F(f)==—, ®A'fHl=-——
f +i+ 1 f=g -4t +g, Fi=5 A7 =-1

Substituting these values into (2.9) we obtain the unique solution of (2.23), which is given by (2.22). O
Example 2.5. Let u(z) € C3[0,1]. Then the problem

u”’( — 822 [ tu/ (t)dt — (3z + 1) [, 2" (t)dt = 20* — 6z + 4, (2.29)
= 2f0 t, u'(0)=—-d/(1), v (0) = —u"(1),
is uniquely solvable on C|0, 1] and its unique solution is given by
3 1
3 2
—3_2 - 2.
u(z) == 5%+ 5 (2.30)

Proof. First we must determine the operators Bi, A and Ag. By comparing Problem (2.29) with (2.14)
it is natural to take X = C0,1],

Biu = u"' () — 8z* /1 tu'(t)dt — (3z + 1) /1 2" (t)dt = 22 — 62 + 4, (2.31)
0 0
D(By) = {u(x) € C*[0, 1] : u(0) = 2 / w(t)dt, o (0) = —u/(1), w’(0) = —u"(1)},

d(Agu) = fo fo tu' (t)dtdy, (AAou f f t2u'" (t)dtdy, (2.32)
Az = Adou(z) = u"(z), Aou=u'(2).

Denote v(z) = u/(z). Then AAgu(z) = v (z) = (v (z )) = Av (x) v"”(x). From boundary conditions (2.31)

"

follws that v(0) = +/(0) = —u/(1) = —v(1), v'(0) = u”(0) —v/(1). So the operators A, Ay are
defined by

Av(z) =v"(z), D(A) = {v(x) € C?[0,1]: (0) = —uv(1), v'(0) = =0'(1)},

Agu(z) =/ (z), D(Ag) = {u(z) € C*[0,1] = 2f0 x)dx}.

Now we make sure that D(B;) = D(AAp). Using the definition of the product operators we get
D(AAy) = {u(z) € D(Ap) : Agu € D(A)} = {u(z) € C*[0,1] : u(0) =
= 2f0 x)dx, o' (z) € C?[0,1], v/ (0) = —u/(1), u”(0) = —u"(1)} = D(By).
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Since D(B;) = D(AAy), we can apply Theorem 2.3. It is easy to verify that the operators A and A, are
correct and their inverse operators for all f(t) € C[0,1] are given by

A () =2 [ (¢ — D) f()dt + [T f( (2.33)
AT (@) =L [ (t—x—§) f(t dt—i—fox—tf(t)dt (2.34)

By comparing again (2.31) with (2.14) it is natural to take S = S(z) = 822, G = G(z) = 3z + 1. From (2.32)
we get

o) = [ i P = [ Ero (2.35)

Let f(z) = A~1f(z) and AAgu(z) = f(z). Then, since Ay, A are invertible, by means of (2.33) and (2.34)
we have

u(z) = AgYAT f(x) = Ag () = 2 [ (t = V) f(t)dt + [ f(t)dt =
—aflt-1) [lf()l (s—t—1) f(s ds—i—fo(t—s)f(s)ds] di+

+f0{ fo( —t—1) f(s ds—l—fot—sf(s)ds}dt.
Further using Fubini theorem we obtain
AP AT () =—4 fol [32% + 3z(1 — 2s) — 453 + 1252 — 65 — 1] f(s)ds +
—i—% fox(ac —5)2f(s)ds. (2.36)
Using (2.36) for f = f(z) =222 —6x+4 and G =3z +1 we get
AgTAT = =L [V[322 + 3x(1 — 25) — 4% 4 125% — 65 — 1](25% — 65 + 4)ds + (2.37)
+3 fo (x = 5)%(25% — 65+ 4)ds = z5(22° — 152" + 402% — 252% — 10z + 12),
AgTAT = L [1132% + 3x(1 — 25) — 4s® + 125% — 65 — 1](3s + 1)ds + (2.38)

+1 ¥ (@ — 9)2(3s + 1)ds = 5 (152% + 2023 — 7522 + 152 + 19).
Using (2.34) for S = S(z) =82%, G =G(z) =3x+1, f(x)=22%—6x+4 we find
ATLS =L (- 1) (88)dt + [ (x — 1)(8t%)dt = 2t
ATNG = (== 5) Bt+ Dt + [y (@ — 1) (3t + 1)t = Ll 10mi
AN =L (- a = 1) (22 — 6t + 4)dt + [ (x — t)(22 — 6t + 4)dt

_ 2?(2®—6x+12)—bx—1
= 5 .

Then by using (2.35) we arrive at

D(AIQ) = L [T e[t + 1) — 10t + 1)dt = — 2L,
F(G) = f t2(3t + 1)dt = 13,
S(ATf) =L [P — 6t + 12) — 5t — 1)dt = — &,
F(f) = [y —6t+4)dt =L, F(S) = [, t*(8t3)dt = &

Further by (2.17), (2.18) and (2.19) we find
detL = det[l,, — F(G)] =1—13/12 = —1/12,
Go  =Gola,y) = A1S+ ATIGL1F(S) = 2idesl | dof(ed) 1001 (198

_ 10a*—1442° 1442243400 — 31
- 15

B(Go) = & [) H(10t* — 14465 — 144¢% + 340t — 31)dt = 34T,
det Ly = det[l,, — ®(Go)] =1 — 3 = {5
Since det L,det Ly # 0, by Theorem 2.3, Problem (2.31) or (2.29) is correct. Applying (2.33) we thus have
A7lGo =2 [ (t — DGo(t)dt + [ Go(t)dt =
= 2 [t —1)(106* — 1443 — 144¢> + 340t — 31)dt+
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+& [ (10t* — 14483 — 14412 4 340t — 31)dt =

— 223 z(2z* —362° — 4822 +170x— 31)
-5 15

Substituting the above values into (2.9) we get the solution (2.30). ]

3. Factorization of hyperbolic integro-differential equations with
integral boundary conditions

Everywhere below €=
Lemma 3.1. Let a(x),c(x) € C[0,1], K(y)
the problem:

C[0,1]. Then the operator A : C(Q) — C(Q) corresponding to

Au(t) = U’ij(x’y) + c(x)u(m,y) = f(l‘, y)v (31)

D(A) = {u(z,y) € C(Q) : u(w,y) € C(Q), u(w,0) = () fy K(y)u(,y)dy |

s correct if and only if
1
) / K(y)e v @ dy £ 1, (3.2)
0
and the unique solution of the above problem is given by the formula
-1
uwy) = A7 f(ey) = a(@)e @ (1-a(z) f; K(y)e-wmdy) x

< LR ()e @ [ f(, 0O dtdy + v [V, 1)t . (3.3)
Proof. Assume that u(z,y) € ker A and (3.2) hold. Then from (3.1) we get

uy (z,y) + c(z)u(z,y) =0, u(z,0)=a(x / K(y (3.4)
From the above equation by integration on y we obtain
u(z,y) = u(z,0)e @ u(z,y) = a(x)e ve®) f K(y)u(z,y)dy, (3.5)
Jo K@)u(w,y)dy = a(z) fy K(y)e r@dy [} K(y)ulz,y)dy,
[1-a(@) f, K(y)e—yc@)czy} Jy K(wyu(e,y)dy = 0.

From the last equation, since (3.2), follows that fol K(y)u(z,y)dy = 0. Substitution of this value into (3.5)
implies u(x,y) = 0. This means that the operator A is injective.

Conversaly. Let u(xz,y) € ker A and a(z) fol K(y)e ¥@)dy = 1. Then (3.4) holds. It is easy to verify
that u(z,y) = e ¥(®) satisfies problem (3.4). Thus we prove that u(z,y) = e ¥“*) € ker A and so A is not
injective.

We will find the solution to (3.1). Let a( fo Je ¥e(@)dy # 1. Then A is injective and problem (3.1)
has a unique solution. From (3.1) by 1ntegrat10n on y we obtain

u(x,y) = e~ ve(@) fo u(z,y)dy + e ve®) f” Yete®@)dt, (3.6)
Jy K@)u(z,y)dy = a(x fo Je v @dy [ K (y)u(z, y)dy +
+f0 K(y)e vl fy (z,t)e ) dtdy,
(1= a(@) fy Ke v @dy] [} K(y)ulz, y)dy =

:fol K(y)e ve@ [Y f(z,t)et@ dtdy.

Then since (3.2) we obtain

/ Ku(z,y)dy = (1 —a(z) fol K(y)e—yC(l)dy)il X

X [ K (y)eve@) [¥ f(a, 1)@ dtdy. (3.7)
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Substituting (3.7) into (3.6), we obtain the unique solution (3.3) to (3.1) for every f € C(Q). Since f in
(3.3) is an arbitrary element of C(Q), then R(A) = C(Q). It is easy to verify that A~! is bounded. Hence
A is correct. |
Lemma 3.2. Let b(y),d(y) € C[0,1], Ko(z) € C[0,1]. Then the operator Ag: C(2) — C(Q) corresponding to
the problem:

Aou(t) = uy(z,y) + d(y)u(z,y) = f(z,y), (3.8)
D(4y) = {ul@,y) € C(Q) : o, € C(Q), u(0,y) = bly) fy Kolw)u(z,y)da }
is correct if and only if
) / Ko@) ® dr £ 1 (3.9)
and the unique solution of the above problem Ois given by the formula
u(z,y) = Ayt f(x,y) = b(y)e 24w (1 — by fo Ko(x *Id(y)dx)_l X (3.10)
X fol Ko(z)e™ W) [ f(s,y)es? @ dsdz 4+ e~ [ f(s,y)es4W)ds.
Proof. Assume that u(z,y) € ker Ag  and (3.9) hold. Then from (3.8) we get

1
uy(z,y) + dy)u(z,y) =0, u(0,y) = b(y)/ Ko(z)u(z,y)dz. (3.11)
0
From the last equation by integration on x we obtain

u(z,y) = u(0,y)e= W) u(x,y) = e W (y) fol Ko(z)u(z,y)dz, (3.12)
fol Ko(z)u(z,y)dr = b(y) fol Ko(z)e= =W dy fol Ko(z)u(z,y)dz,
[1 —b(y) fol Ko(x)efzd(y)dx} fol Ko(z)u(z,y)dx = 0.

If by fo Ko(z)e @ Wdx £1, we get fol Ko(x)u(z,y)dz = 0. Substitution of this value into (3.12) implies
u(z, y) =0. ThlS means that Ay is injective.

Conversaly. Let u(z,y) € ker Ag and  b(y) fol Ko(x)e W dx = 1. Then (3.11) holds. It is easy to verify

that u(z,y) = e~ *?W) £ 0 satisfies (3.11). Thus we prove that ker Ag # {0} and so Ay is not injective.

We will find the solution to (3.8). Let b(y fo Ko(x)e W dx # 4+1. Then Ay is injective and Problem (3.8)

has a unique solution. From (3.8) by mtegratlon on x for every f € C(Q) we obtain

u(z,y) = e~ 7d(y f Ko(x)u(z,y)dz + e~ W) Iy f(s, y)es W ds, (3.13)
fol Ko(z)u(z,y)dr = b(y) fol Ko(x)e W) dy fol Ko(z)u(z,y)dr +

+ Jo Kol@)e ™ [ f(s,y)e*!) dsde,
[1 —b(y fo Ko(x ’wd(y)dx} fol Ko(x)u(z,y)dr =

:fol Ko(z)e W) [ f(s,y)e* @ dsdx.

Then since (3.9) we obtain

1 —1
/0 Ko(z)u(z,y)dx (1 —b(y fo Ko(z ’md(y)dm) X
x fol Ko(z)e==W) [ f(s,y)e @ dsda. (3.14)

Substituting (3.14) into (3.13), we obtain the unique solution (3.10) to (3.8) for every f € C(Q). Since f
n (3.10) is an arbitrary element of C(Q), then R(A) = C(Q). Tt is easy to verify that Ay’ is bounded.
Hence Ag is correct. O
Theorem 3.3. Let a(z),c(z), Ko(z) € C[0,1],b(y),K(y) € C[0,1],d(y) € C'0,1], h(z,y),u(z,y) €
CY(Q), ull,(x,y) € C(Q). Then the problem
iy (2, y) + c(@)ue (z,y) + d(y)uy (2, ) + bz, y)u(z,y) = f(z,y), (3.15)
(O y) = by fo KO Yu(z, y)dx,

u, (x,0) + d(0)u(, z) fo K@), (z,y) + d(y)u(, y)]dy
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s correct if

h(z,y) = d'(y) + c(x)d(y), (3.16)
) o K(y)e " @dy # 1, bly) [} Ko(x)e W dx # 1 (3.17)
and its unique solution is giwen by the formula
-1
u(z, ) =b(y )e“”d(y) (1 —b(y fl Ko(z e"“d(y)dm) X (3.18)
f Ko(x)e =4 y)f W) dsdx + e~ *4W) Iy v(s,y)e* ¥ ds,
where
-1
v(z,y) = a(x)e v (1 —a(x fo Je yc(w)dy) X (3.19)
< [ K (y)e=ve@ [ f(a,1) tc<r>dtdy+ =) [V f(az, t)ele)dt.

Proof. Let the operator A be defined by (3.1) and the operator Ay by (3.8), where we suppose that
d(y) € C*[0,1]. Denote by A; the operator corresponding to Problem (3.15), namely:

Avu(z,y) = uy, (z,y) + c(x)ul(z,y) + d(y)uy (z,y) + bz, y)u(z,y), (3.20)
D(Ar) = {u(w,y) € C(Q) : uy(z,y),uy(@,y), ug, (2, y) € C(Q), (3.21)
u(0,y) = b(y) fy Ko(x)u(z,y)dz,
(2, 0) + d(0)u(z, z) fo K (=) + d(y)u(z, y)ldy}.

We will prove that A; = AAy, i.e. D(Al) = (AAO), Alu = AApu for all uwe D(Ay) if h(x,y)=d(y)+
+ c(z)d(y). Using the definition of a superposition of two operators, we find

D(AAg) = {u € D(Ap) : Agu € D(A)} = (3.22)
— {u(z,y) € C(Q) : u, € C(Q), u(0,y) = bly) [y Ko(x)u(x,y)dz, Ayu € D(A)} =
= {u(z,y) € C(Q) : wy(w,y) € C(Q), (u(z,y) +d(y)u(z,y)), € C(Q),
u(0,y) = b(y) fy Ko(x)u(z,y)dz,
uf(2,0) + d(0)u(z, 2) Jo K@) (w,9) + dy)u(z, y)ldy},

Adou(z,y) = (uy(w,y) + dy)ulz,y)), + c(@)[u; (2, y) + dy)ulz, y)]. (3.23)
Since d(y) € C*0,1], from (ul,(z,y) + d(y)u(z, )) € C(Q) follows that u}, € C(Q) and
(,

(w (2, y) + d(y)ulz,y)), = uf, (2. y) + d (y)ule,y) + dy)u,(z,y) € C(Q).
(

Then from (3.22) follows that D(AAg) = D(A;). Furthermore if the condition (3.16) is additionally satisfied
then (3.23) implies Aju= AAou for all w € D(A;). Thus we proved that if (3.16) holds, then A; = AA,.
Now we find the solvability condition and solution of Aju = f, u € D(A;) for the case when (3.16) holds.
Denote by v(z,y) = Aou(x,y) = uy(x,y) +d(y)u(z,y). Then Aju= AAju= Av=f. The last equation is
correct by Lemma 3.1 if and only if (3.2) is satisfied. Then v = Agu = A"1f where A~!f is calculated
by (3.3) which is (3.19). The equation Aqu =v is correct by Lemma 3.2 if and only if (3.9) is satisfied.
Then w = Aj'v where Aj'v s calculated by (3.10) which is (3.18). Thus we proved that if (3.16),
(3.17) hold true then the operator A; or Problem (3.15) is correct and its unique solution is (3.18) where
v(x,y) is given by (3.19). The theorem is proved. O
From Theorem 3.3 for c¢(z) = d(y) = h(z,y) =0 follows the next
Corollary 3.4. Let a(x), Ko(x) € C[0,1], b(y), K(y) € C[0,1], u(z,y) € C*(Q), u},(x,y) € C(Q). Then the

problem
ut (29) = f(z,9), (3.24)

u(0,y) = b(y) fy Kolw)u(z,y
u(2,0) = a(z) Jy K(y

~
£
8~
—
8
< =
~—
QU
<

is correct on C(Q) if

o [ Ky #1. ) /O Kolw)de £ 1. (3.25)
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and the unique solution of Problem (3.24) is given by the formula

= M (VR (a) | [T ——2 [V K(y) [ (s, t)dtdyds +
1=b(y) JX Ko(z)dz J0 ol 0 1-a(s) [} K(y)dy JO 0
+ [T Y f(s, t)dtds | dax + [T W [y K(y) [2 f(s,t)dtdyds +

+ Jo Jo f(s, t)dtds.

The following problem is solved by Theorem 2.3.
Example 3.5. Let u(z,y),u,(z,y), u,(2,y),u}, € C(Q). Then the problem

1,1 1
u’z’y —(z +v) fo fo aul (x,y)dedy — 323 fo fo yzu;’y(m y)dxdy (3.27)
= 1523 — 22 — Qy,
ul,(2,0) =0, u(0,y) fo x,y)dz,

is uniquelly solvable if y # 0 and the unique solution of (3.27) is given by the formula
u(z,y) = 5xty —y — 1. (3.28)

Proof. Denote by Bj the operator corresponding to Problem (3.27). First we must determine the operators
A and Ap and make sure that D(B;) = D(AAp). Comparing (3.27) with (2.14) it is natural to take X = C(2),

D(Agu) = fol fol zul (z,y)drdy, F(AAou)= fo 01 y2ull, (z,y)dxdy, (3.29)
AAou(z,y) = uy, (z,y), Aou = uy(z,y).

Denote v(z,y) = uj(z,y). Then AAou(z,y) = uy,(v,y) = (uy(w, y))/ = Av(z,y) = vy(r,y). From boundary
conditions (3.27) follws that v(z,0) = 0. So the operators A, Ay are defined by

Av(z,y) = vy(z,y), D(A) = {v(z,y) € cQ): vy, € C(Q), v(z,0) = 0},
Aou(z,y) = ul(z,y), D(Ao) = {u(z,y) € C(Q) :u, € C(Q),
0,y)=(y+1) fol u(z,y)dz}.

Then
D(AAg) = {u(z,y) € D(Ap) : Agu € D(A)} = {u(z,y) € C(Q) :

uh,ully € C(Q), u(0,y) = (y+1) [ ulz,y)dz, ul(z,0) = 0} = D(By).

Since D(By) = D(AA), we can apply Theorem 2.3. Note that the operator A coincides with the operator
A from Lemma 3.1 if a(x) = ¢(x) =0 and the operator Ay coincides with the operator Ay from Lemma 3.2
if b(y)=y+1,d(y) =0, Ko(z) =1. Then by Lemma 3.1, the operator A is correct and

y
Ay = [ rabat (3.30)
0
by Lemma 3.2 the operator Aj is correct if and only if y#0 and its inverse is defined by

y+1
0

AT () = (1= 9)f(s.y ds+/ f(s,9)d (3.31)

Notice that the operator AAg coincides with the operator corresponding to Problem (3.24) and, by Corollary
3.4, is correct if y # 0 and its inverse is defined by

ASTA f(z,y) = y“///fstdtdsda:+//fstdtds (3.32)

Comparing again (3.27) with (2.14) it is natural to take S =2 +y, G =323 f=152>—-22—2y. From

(3.29) follows that
1 1 1 1
_ _ 2
_ /0 /0 of(e,y)dedy, F(f) = /O /0 v f (2, y)dxdy. (3.33)

Using (3.32) for f = 152% — 2z — 2y and G = 323 we find
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Agt AT f(m,y) = y“ fo Iy JJ(158% — 25 — 2t)dtdsdz+

+ fO:r foy(1553 _ 95— 2t)dtd5 _ 45z y—1222 y71213;y +(y+1)(6y75)’

AgtATIG = —uEL [0 [T [V 3sPdtdsda+

Iy S s s =~y -+ 1) + Gty 4 SEOSR S

By means (3.30) for G =323, S=x+y we get

ATIG = foy x,t)dt = fo 3x3dt = 33y,
ATLS = [ S(z, t)dt = [ (x + t)dt = zy + y?/2,

A_lfzfoy x,t)dt = fo (1523 — 22 — 2y)dt = 1523y — 2xy — y>.

Using (3.33) we get

= fol fol y*S(z,y)dzedy = fol fol y2(z + y)dady = 35,
fo fo G(x,y)dzdy = fo fo y?3x3dxdy = 1,
= [ Jo v? f (@ y)dady = [y [y y? (152 — 22 — 2y)dady = 3
O(AG) = [} [ a3a3ydady = %,

fo fo 2(1523y — 22y — y?)dzdy = 1.

Further by (2.17)—(2.19) we ﬁnd

L =1I,-F(G) =1-1/4=3/4,
Go =Go(x,y) = A8+ A'GL™'F(S) = ay + & + Ja?y,
Ly =1,—-®(Gy)=1- fo fo xGo(z, y)dzdy

1,1 2
=1-J; foa:(xy—l—y?—kgatg’y)dxdy:llz.

Since det L = 3/4 # 0 and det Ly = 7/12 # 0, by Theorem 2.3, Problem 3.27 is correct. Applying (3.31)

obtain -
-1 x
Ag'Gy = =12 [( (1= 9)Go(s,y)ds + [y Go(s,y)ds
_ saty4622y+6ay® —3(y+1)>
= e .
Substituting the above values into (2.9) we get (3.28). O
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PAKTOPU3AINNA OBBIKHOBEHHBIX 1 I'MIIEPBOJIMYECKNX
NHTEI'PO-INOPEPEHIIMAJIbBHBIX YPABHEHUN C MHTEI'PAJIbBHBIMUI
YCJIOBNAMMN B BAHAXOBOM IITPOCTPAHCTBE

AHHOTAIINA

B crarbe mcciesoBaHbl yCJIOBHSI CYIIECTBOBAHUS €UHCTBEHHOIO TOYHOI'O PEIIEHUs JJISl OJHOIO KJIACCa
abCTPaKTHBIX ONEPATOPHBIX ypaBHeHuil Buga Biu = Au — S®(Agu) — GF(Au) = f, w € D(Bp), rue
A, Ay — smneitabie aberpakTHble onepatopbl; G, S — juHeltHbie BekTOpbl; O, ' — jnHeiiable (hyHKIINOHATIBHBIE
BEKTOPBI. DTOT KJACC yPABHEHWII IOJIE3€H I PEIeHUs KPAeBbIX 3aJad sl WHTErpo-auddepeHna bHbIX
ypaBHeHuit B ciaydae, korga A, Ay — muddepennmanbabie oneparopsl, a F(Au), ®(Agu) — wHTErpajabHbIE
omeparopel  Dpegronbma. [lokazano, uro omepaTopsl THMa Bj MOryT OBITb B HEKOTOPBIX CJIYUasiX
IIPEJICTABICHbl KaK IPOM3BEIEHU JBYX Oosiee INPOCTBIX omneparopoB Bg, Bg, CHENUaIbHOIO BHIA, UYTO
MMO3BOJISIET MOJIyYUTh YCJIOBUE CYIIECTBOBAHUS €IUHCTBEHHOIO TOYHOIO pelteHus ypaBHenust Biju = f wu3
YCJIOBHI OJHO3HAYHON pa3pemnnMocTu ypaBHeHuit Bgv = f u Bg,u = v.

KuaroueBbie cioBa: KoppekTHas (10 Ajamapy) paspeimMocTb; MeTon (haKTOPU3aIWK (IeKOMIIO3UIINN);
unrerpo-auddepennuaibibe ypasaeaus PpearosibMa; Hadaj bHAs 33/a9a; HEJOKaJbHAd KpaeBas 3aJada C
MHTETPAJbLHLIMA yCIOBUSIMU.
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