1 Введение

Синхронизация маятников, хронометров, механических часов, подвешенных к общей подвижной балке, рассматривается в многочисленных работах [1-5]; исследование, в основном, осуществляется качественными, с использованием фазовых характеристик, или приближенными аналитическими методами.

мает реакцию со стороны маятника, то маятник воспринимает точно такую же, а не малую силу, от балки? В случае синхронизации частоты осцилляторов равны (рассматривается взаимная синхронизация), а амплитуды и фазы могут отличаться? Вопросы эти можно продолжить.

В работе поставлены задачи: уточнить физический механизм внутренней, взаимной синхронизации осцилляторов, разработать детальную и, насколько возможно, адекватную математическую модель синхронизации маятников, подвешенных на общей балке и провести численное исследование с целью получения ответов хотя бы на некоторые поставленные вопросы.

2 Маятник с качающимся привесом

Рассмотрим простейший случай о маятнике с качающимися привесом. В печати подробно рассматривается эта задача см., например, [5] с. 287. Если точка привеса совершает прямоугольные горизонтальные гармонические колебания около неподвижной точки О с амплитудой равной ОО₁=Аsin(ωt), то на математический маятник массой m длиной L начинает действовать переносная сила инерции, направленная по горизонтали и равная

\[-m \ddot{x} = mAω^2 \sin(ωt), \]

(1)

так что соответствующий момент составляет

\[M = mAω^2 \sin(ωt) L \cos(φ). \]

(2)

С учетом массовой возвращающей силы и силы вязкого сопротивления дифференциальное уравнение относительного движения маятника можно записать в виде

\[mL^2 \ddot{φ} = -mgL \sin(φ) + +mAω^2 \sin(ωt) L \cos(φ) - k_{Mφ}^1 \dot{φ}, \]

(3)

где \(k_{Mφ}^1 \) – коэффициент вязкого трения.

Разделив каждый член уравнения на \(mL^2 \) и обозначая частоту собственных колебаний \(k = √{g/L} \), получим:

\[\ddot{φ} = -k^2 \sin(φ) + \left(\frac{Aω^2}{L} \right) \sin(ωt) \cos(φ) - \frac{k_{Mφ}^1}{k} \dot{φ}, \]

(4)

где \(k_{Mφ} = \frac{k_{Mφ}^1}{ml^2} \).

Уравнение (4) является нелинейным, так как включает в себя трансцендентные функции. Точное решение – не существует, аналитическое решение его можно получить в линейном приближении или каким-либо другим приближенным методом (метод вариаций постоянных, гармонической линеаризации и др.). В статье выполнено численное решение уравнения (4), приводится анализ и сравнение численного решения с другими методами.

В линейном приближении уравнение (4) принимает совсем простую форму

\[\ddot{φ} = -k^2 φ + \left(\frac{Aω^2}{L} \right) \sin(ωt) - k_{Mφ} \dot{φ}, \]

(5)

Аналитическое решение уравнения (5) без учета трения см. [5] имеет вид:

\[φ_{лип} = \frac{Aω^2}{L(k^2 - ω^2)} \left(\sin(ωt) - \frac{ω}{k} \sin(kt) \right), \]

(6)

На верхней строчке рис.2 приведены результаты расчета по формуле (6) при небольших значениях частоты возмущающего сигнала, а на нижней – результаты численного интегрирования уравнения (4) методом Radau в интегрированной среде Mathcad так же при небольших значениях φ; на рис.2 приведены оба переходных процесса совместно, – совпадение хорошее. Переходные
процессы – периодические, но не гармонические.

Рисунок 2 – Сравнение результатов по линейной и нелинейной моделям при малых частотах воздействия \(\omega = 60,1/с \) (Параметры расчета: \(L = 0,02 \text{ м}; \ A = 0,0001 \text{ м}; \ k = 22,147 \frac{1}{с} \))

При последовательном увеличении частоты колебаний возмущающей силы амплитуды колебания маятника растут, но также увеличивается разница линейных и нелинейных колебаний маятника, так на рис.3 показаны осциллограммы при частоте \(\omega \approx 8856 \text{ 1/с} \), амплитуда линейных колебаний стремится примерно к 2 рад, а нелинейных – к \(\pi \) причем при этом маятник как бы зависит в верхней точке и по прохождении некоторого отрезка времени движется в обратном направлении; период нелинейных колебаний \(T_{или} \) получается примерно в два раз больше, чем у линейных колебаний (см. рис.3а). Значение частоты \(\omega \approx 8856 \) не является какой-то неизменной константой, так при амплитуде \(A=10-3 \text{ м} \) похожая картина наблюдается уже при частоте \(\omega \approx 885 \), то есть в десять раз меньшей, анализ размерностей показал, что определяющим фактором является так называемая приведенная частота \(\tilde{\omega} = \frac{\omega A}{kL} \), критическое значение приведенной частоты, как показало численное исследование, равно \(\tilde{\omega}_{кр} = 2 \), поэтому количественные зависимости далее будут приведены в зависимости от приведенной частоты.

Рисунок 3 – Осциллограммы при большой частоте внешнего воздействия \(\omega = 8858,6 \text{ (Параметры расчета: } L = 0,02 \text{ м}; \ A = 0,0001 \text{ м}; \ k = 22,147 \frac{2}{с} \))

При дальнейшем увеличении частоты колебаний подвеса свыше критической маятник (см. рис.4) начинает вращатьься, завися каждый раз в нечетных положениях \((2n-1)\pi \).

Рисунок 4 – Вращение маятника при частотах, большие чем \(\omega = 8885 \text{ 1/с} \)

С использованием уравнения (4) выполнен численный эксперимент по определению зависимостей периода и амплитуды автоколебаний от частоты внешнего воздействия, результаты показаны на рис. 5.
Приближенное значение $T = T/T_{\text{лим}} \approx 2.5$ и далее не изменяется, амплитуда (вернее полурасстрой колебаний) постоянно нарастаю, достигая значения π и далее не изменяется.

§ 3 Синхронизация колебаний двух маятников

В предыдущем случае частота внешнего воздействия ω задавалась извне и рассматривалась как постоянная величина. Рассмотрим простейший пример (см. рис. 6) синхронизации колебаний маятников, подвешенных на упругой платформе (балка), которая может перемещаться относительно неподвижного основания только в горизонтальном направлении по оси x. Платформа связана с основанием посредством пружины с жесткостью c_x и линейного демпфирующего элемента k_{ex}. К платформе подвешены два маятника, оси вращения которых перпендикулярны оси x. Принято к рассмотрению расчетная схема, взаимосвязанная проста, ее коротко можно охарактеризовать так: математические маятники, подвешенные на математической балке (в отличие от несравненно сложной схемы Гойгенса). Но таково требование моделирования, которое предстоит довести до числа.

В работе [4] для описания похожей задачи использовали систему уравнений Ван дер Пола, дополненную формально введенными членами, учитывающими перекрестное влияние маятников. Уравнения Ван дер Пола сыграли огромную роль в развитии теории автоколебаний, но они описывают гипотетические автоколебания в гипотетических генераторах электромагнитных колебаний, а в данной расчетной схеме имеется три массы, движение каждой из которых должно быть описано своим уравнением с учётом взаимного влияния, так при колебаниях маятников на платформу действуют реактивные силы (горизонтальные составляющие), в свою очередь, со стороны платформы на маятники действует переносная сила инерции. Предположим, что платформа колеблется с собственной частотой $\omega = \sqrt{c_x/M_x}$. На самом деле в рассматриваемой системе с тремя степенями свободы могут реализоваться совсем другие частоты, но если масса платформы намного больше маятников, то это допущение не так далеко от действительности, мы еще вернемся к этому вопросу при обсуждении результатов расчетов. Тогда дополнительный момент будет, как и в случае маятника с качающимся подвесом, иметь вид $M = m \omega^2 \sin(\omega t) L \cos(\varphi)$.

Уравнения моментов маятников в этом случае подобны уравнениям (3) и (4) и с добавлением соответствующего момента будут иметь вид

\begin{align}
\dot{\phi}_1 &= -k_1 \sin(\phi_1) + (\omega^2 x/l_1) \cos(\phi_1) - k_{M\phi 1} \phi_1, \\
\dot{\phi}_2 &= -k_2 \sin(\phi_2) + (\omega^2 x/l_2) \cos(\phi_2) - k_{M\phi 2} \phi_2,
\end{align}
а уравнение движения платформы

\[M_2 \ddot{x} = -c_x \dot{x} - k_{xx} \dot{x} + m_1 \dot{\phi}_1^2 L_1 + m_1 g \cos(\phi_1) + m_2 \dot{\phi}_2^2 L_2 + m_2 g \cos(\phi_2), \quad (9) \]

Понятно, что и эта модель далека от совершенства: желательно чтобы балка была гибкой, расположение подвесов маятников было несимметричным, а сами подвесы были не идеальными и тому подобное. Но и эта модель, подобно первому автомобилю, который уже имел четыре колеса и руль, готова к модернизации.

Уравнения (7)-(9) с начальными условиями:
\[\phi_1(0) = 0; \quad \phi_1'(0) = 0; \quad \phi_2(0) = 0; \quad \dot{x}(0) = 0; \quad x(0) = 0.05 \]

и одинаковыми маятниками проинтегрированы в среде Mathcad, некоторые результаты представлены на рис.7.

Как и следовало ожидать оба маятника колеблются одинаково, синфазно и синхронно.

На следующем рисунке 8 длина первого маятника увеличена и составляет \(L_2 = 0.024 \) м, а остальные размеры и условия остались как на рисунке 7.

Маятники даже при такой большой погрешности изготовления \(\delta L = \frac{L_1 - L_2}{L_1} \times 100 = 17.355\% \) колеблются почти одинаково:

погрешность амплитуд составляет \(\delta \phi = \frac{\phi_1 - \phi_2}{\phi_1} = 9.224\% \), частоты же колебаний, что значительно важнее, практически совпадают, относительная разность периодов составляет всего \(\delta T = 0.696\% \).

Форма колебаний маятников существенно зависит от значений коэффициентов взаимного трения: при нулевых значениях наблюдаются гармоники высоких порядков, при некоторых значениях коэффициента трения колебания почти гармонические, при дальнейшем увеличении трения колебания становятся сходящимися.

Рассмотренные ранее колебания являются свободными, для надлежащей формы колебаний дано небольшое значение коэффи-
Динамика и вибропионика, Т.6, №3, 2020

цента вязкого трения. Для компенсации потерь и реализации автоколебательного процесса необходимо подвести управляющий момент. Вначале рассмотрим один изолированный маятник, уравнение моментов в данном случае будет иметь вид:

\[mL^2 \ddot{\phi} + k_{MF} \dot{\phi} + k^2 \phi = M, \quad (10) \]

где \(M \) — управляющий момент, который можно формировать различным образом, наиболее благоприятные условия для поддержания автоколебаний выполняются в том случае, когда импульс подводится в нейтральном положении маятника, и в направлении действия скорости; пусть момент подводится один раз за цикл

\[
M = \begin{cases}
0, & \text{если } y \approx 0 \text{ и } v > 0, \\
M_0, & \text{иначе}
\end{cases}
\quad (11)
\]

Теперь задача стала не только нелинейной, но и нестационарной, ее можно решить только численным способом. На рис. 9 приведены установившиеся колебания маятника, полученные непосредственным решением (10) с учетом условия (11); на фазовой диаграмме (рис. 9а) стрелкой показано место в пространстве состояний, где подводится импульс.

![Фазовая диаграмма маятника](image)

Рисунок 9 - Установившиеся колебания маятника с подводом импульса
а) Перемещение и скорость; б) фазовая диаграмма

Далее составим систему уравнений для двух маятников, как и прежде, подвешенных на упругом основании, но с учетом подвода импульса (эти уравнения не приводятся, так как они практически аналогичны (7)-(9)). Численное решение, приведенное на рис.10, получается весьма похожим на рис. 8, но теперь рассматривается синхронизация автоколебательных устройств и она более эффективна, так при погрешности длины маятников \(\approx 17\%\) погрешность периодов составляет всего \(0,28\%), обращает внимание отсутствие скачка скорости в точке подвода импульса на фазовой диаграмме, только при очень больших значениях момента (\(M_0 = \frac{M_0}{mgl} > 10\)) начинают проявляться слабые признаки скачка.

Аналогичное исследование выполнено для четырех маятников с подводом энергии; модель в этом случае имеет вид

\[
\dot{\phi}_i = -k_i^2 \sin(\phi_i) + (\omega^2 x/L_i) \cos(\phi_i) - k_{Mphi}\phi_i + M_i
\]

\[
M_i \ddot{x} = -c_i x - k_{vx} \dot{x} + \sum_i m_i \phi_i^2 L_i + \sum_i m_i g \cos(\phi_i), \quad (13)
\]

где \(i = 1 + 4\).
Результаты интегрирования системы (13) показаны на рис. 12; несмотря на самые разнообразные начальные условия маятники стремятся колебаться синхронно. В дальнейшем все исследование выполнялись на модели с подводом импульса силы и для

Рисунок 12 - Переходные процессы для четырех маятников
а) перемещение; б) скорость; в) фазовая диаграмма

С использованием системы (7)-(9) выполнено исследование влияния различных факторов на результаты интегрирования. Так на рис.13 показано влияние жесткости пружины основания на периоды колебаний маятников (треугольники) и платформы (жирная штриховая линия); периоды колебаний маятников измерялись с использованием подпрограммы

Рисунок 13 - Влияние жесткости пружины основания

Т1, 2 = 2π / (T1, 2 = 2π / k1, 2).

Следовательно, платформа навязывает обоим маятникам одну, свою собственную частоту колебаний — этим, по-видимому, объясняется эффект синхронизации в данной схеме. Таким образом, применительно к часам синхронизация не обеспечивает точности хода, особенно на малых частотах (погрешность хода при больших частотах меньше). Точный ход можно обеспечить при подборе параметров балки, при котором собственные частоты балки и маятников равны, то есть, когда ω = k.

Рисунок 14 - Синхронизация маятников при расстройке частот
На рис. 14а показано изменение периодов колебаний маятников при изменении длины первого маятника в диапазоне $L_1 = 0.005 - 0.04$ м, длина второго маятника при этом $L_2 = 0.02$ м = const., а жесткость пружины основания $c_x = 10^6$ Н/м ; период первого маятника растет, а второго – остается без изменения. На рис. 14б эти результаты пересечены в виде зависимости относительного изменения частоты колебаний от относительной расстройки по формулам $\delta f = \frac{\frac{F_{\phi 1}}{F_{\phi 2}}}{\frac{1}{1}}$ и $\delta f = \frac{\frac{F_{\phi 1}}{F_{\phi 2}}}{\frac{L_1}{L_2}}$.

Основание; при малой жесткости синхронизация практически полная, с ростом расстройки и жесткости пружины основания синхронизация ухудшается.

Результаты численного эксперимента можно усилить, если преобразовать систему уравнений (13) к безразмерному виду. Тогда появляются безразмерные комплексы, критерии подобия, в самой структуре которых заложена сущность физических процессов, происходящих в рассматриваемом устройстве. Вводя безразмерное время $\tau = \omega t$ получаем систему (14)

$$\frac{d^2 \varphi_1}{d\tau^2} = -(S_{h1})^2 \sin(\varphi_1) - R_{\varphi 1} \frac{d\varphi_1}{d\tau} + \tilde{x} \cos(\varphi_1)$$

$$+ \frac{d^2 \varphi_2}{d\tau^2} = -(S_{h2})^2 \sin(\varphi_2) - R_{\varphi 2} \frac{d\varphi_2}{d\tau} + \tilde{x} \cos(\varphi_2)$$

(14)

$$\frac{d^2 \tilde{x}}{d\tau^2} = -2 \xi \frac{d\tilde{x}}{d\tau} + \tilde{m}_1 \left(\frac{d\varphi_1}{d\tau} \right)^2$$

$$+ \tilde{m}_{11} \cos(\varphi_1)$$

$$+ \tilde{m}_{2} \tilde{L}_{21} \left(\frac{d\varphi_2}{d\tau} \right)^2$$

$$+ \tilde{m}_{22} \cos(\varphi_2)$$

где $S_{h1,2} = \sqrt{\frac{m_1 g}{c_x L_1}}$ – отношение характерных времен, числа Струхаля маятников; $R_{\varphi 12} = \frac{K_{\varphi 12}}{m_1 \omega^2 L_1 \omega}$ – безразмерные коэффициенты взаимного трения маятников, $\xi = \frac{k_{ex}}{2\sqrt{m_1 c_x}}$ – коэффициент взаимного трения платформы; $\tilde{m}_1 = \frac{m_1}{M_x}$; $\tilde{m}_{11} = \frac{m_{11}}{M_x \omega^2 L_1 \omega}$ и $\tilde{m}_{22} = \frac{m_{22}}{M_x \omega^2 L_2 \omega}$ – относительные массы маятников; $\tilde{L}_{21} = \frac{L_2}{L_1}$ – относительная длина маятников (15).

Число Струхаля имеет глубокий физический смысл, чем он больше (чем меньше жесткость балки), тем больше связь маятников и выше эффективность синхронизации (см. рис.14); точность хода часов будет выполняться лишь при значении числа Струхаля $Sh = 1$.

4 Заключение

Выводы по результатам исследования маятника с качающимся привесом (это вспомогательная задача, предназначенная для отработки модели передачи вибрационного движения от основания к маятнику, но, вместе с тем, она имеет самостоятельное значение): определяющим параметром является приведенная частота $\tilde{\omega} = \frac{\omega A}{kl}$, при малых частотах $\tilde{\omega} < 1$ результаты численного решения полностью совпадают с известным аналитическим решением линейной задачи;

- с ростом частоты период колебаний растет: сначала медленно, а с приближением к $\tilde{\omega} = 2$ – катастрофически, достигая значения $\tilde{T} = \frac{T_0}{T_0 \approx 2.5}$ и далее не изменяется; форма колебаний маятника становится квазигармонической, а амплитуда (вернее полурасчеты колебаний) постоянно нарастает, достигая значения π и далее не изменяется;

- при дальнейшем увеличении относительной частоты маятник начинает вибрировать.

По результатам численного исследования синхронизации маятников (и часов), подвешенных на упругой платформе, получены следующие результаты:

- маятники даже при относительно большой погрешности изготовления
\[\delta L = \frac{L_1 - L_2}{L_1} \times 100 = 17.355\% \] колеблются почти одинаково: погрешность амплитуд составляет \[\delta \varphi = \frac{\varphi_1 - \varphi_2}{\varphi_1} = 9.224\% \], частоты же колебаний, что значительно важнее, практически совпадают, относительная разность периодов составляет всего \[\delta T = 0.696\% \], для частот погрешность еще меньше.

- фактором, определяющим взаимную синхронизацию маятников, является число Струхаля \[Sh = \frac{\omega}{k} = \frac{C_1 l}{M_{xyz} g} \] чем больше число Струхаля (жесткость платформы – меньше), тем выше эффективность синхронизации;

- платформа при выбранных параметрах колеблется с частотой близкой к собственной;

- периоды колебаний маятников примерно равны периодам платформы (платформа «навязывает» свою частоту и маятники как бы забывают собственную частоту), с ростом жесткости платформы \[C_x \] (и числа Струхаля) периоды также уменьшаются, точное равенство периодов платформы и маятников выполняется в случае, когда \[Sh = 1 \];

- с увеличением расстройки частот маятников погрешность синхронизации увеличивается, а с ростом числа Струхаля – уменьшается.

Завершая статью еще раз отметим, что все выводы о синхронизации относятся к принятой расчетной схеме, при иной идеализации такого довольно сложного технического объекта могут получиться соответственно иные результаты.

Список использованных источников

SYNCHRONIZATION OF PENDULUMS (NUMERICAL STUDY)

This paper presents the results of a numerical study of synchronization of pendulums, chronometers, and mechanical clocks suspended from a common movable beam. An auxiliary problem is considered about the oscillations of a pendulum with a swinging weight, then the mutual synchronization of free vibrations of two and four pendulums (and pendulums with the supply of a moment pulse-clock) on a common movable spring-loaded beam. It is shown that in the considered simplest configuration, mutual synchronization (equality of frequencies or oscillation periods) is performed with high efficiency. The frequency of synchronized oscillations of the pendulums is close to the frequency of vibrations of the platform in a wide range of changes in its rigidity. The degree of connectivity of pendulums and synchronization of their oscillations is determined by the Strouhal number. Synchronization of clocks does not guarantee the accuracy of their movement, which is achieved only when the Strouhal number is equal to one.

Key words: Numerical methods; auto-oscillation; nonlinear model; dry friction force; synchronization

References