О связи хемиионизации пламени с температурой и давлением в камере сгорания переменного объёма

А. П. Шайкин, И. Р. Галиев

Аннотация


Приведены результаты исследования связи хемиионизации пламени с температурой пламени и давлением в камере сгорания переменного объёма. Представлены функциональные зависимости температуры пламени и максимального давления от электронного тока, обусловленного хемиионизацией пламени, фундаментальных характеристик распространения пламени и полноты сгорания топлива. Сравнение температуры, рассчитанной по предлагаемой методике, с экспериментальными данными показало, что при коэффициенте избытка воздуха от 0,8 до 1,15 сходимость составляет более 85%. Сравнение максимального давления, полученного экспериментально и рассчитанного по уточнённой модели И.И. Вибе с использованием предложенных формул, показало хорошее соответствие между данными. Результаты работы могут быть применены для прогнозирования и мониторинга ионизационным зондом максимальной температуры пламени и давления в камере сгорания двигателя внутреннего сгорания (ДВС) и других энергетических установок.


Ключ. слова


Температура пламени; давление; хемиионизация; ионизационный зонд; зона химических реакций; hythane

Полный текст:

PDF

Список литературы

1. Nanthagopal K., Subbarao R., Elango T., Baskar P., Annamalai K. Hydrogen enriched compressed natural gas (HCNG): A futuristic fuel for internal combustion engines // Thermal Science. 2011. V. 15, Iss. 4. Р. 1145-1154. DOI: 10.2298/tsci100730044n

2. Rakopoulos C.D., Scott M.A., Kyritsis D.C., Giakoumis E.G. Availability analysis of hydrogen/natural gas blends combustion in internal combustion engines // Energy. 2008. V. 33, Iss. 2. Р. 248-255. DOI: 10.1016/j.energy.2007.05.009

3. Molina D., Restrepo F., Bedoya I. Combustion Monitoring System On A Natural Gas Fuelled Spark Ignition Engine With High Compression Ratio Using Ionization Current Sensors // Proceedings Energy and Sustainability VI. 2015. V. 195. P. 209-218. DOI: 10.2495/esus150181

4. Ясников И.С., Ивашин П.В., Шайкин А.П. К вопросу о турбулентном распространении пламени в замкнутом объёме // Журнал технической физики. 2013. Т. 83, № 11. С. 39-43.

5. Шайкин А.П., Галиев И.Р. О влиянии температуры и ширины зоны турбулентного горения на показания ионизационного датчика // Журнал технической физики. 2016. Т. 86, № 8. С. 87-89.

6. Шайкин А.П., Ивашин П.В., Галиев И.Р., Дерячев А.Д. Характеристики распространения пламени и их влияние на образование несгоревших углеводородов и оксида азота в отработавших газах при добавке водорода в топливно-воздушную смесь энергетических установок с искровым зажиганием. Самара: Самарский научный центр РАН, 2016. 259 с.

7. Gao Z., Wu X., Gao H., Liu B. Investigation on characteristics of ionization current in a spark-ignition engine fueled with natural gas-hydrogen blends with BSS de-noising method // International Journal of Hydrogen Energy. 2010. V. 35, Iss. 23. P. 12918-12929. DOI: 10.1016/j.ijhydene.2010.08.129

8. Гардинер У. Химия горения. М.: Мир, 1988. 464 с.

9. Hermanns R.T. Laminar Burning Velocities of Methane-Hydrogen-Air Mixtures. Veenendaal: Universal Press, 2007. 144 р.

10. Heywood J.B. Internal Combustion Engine Fundamentals. New York: McGraw-Hill, 1988. 930 p.

11. Verhelst S., Woolley R., Lawes M., Sierens R. Laminar and unstable burning velocities and Markstein lengths of hydrogen–air mixtures at engine-like conditions // Proceedings of the Combustion Institute. 2005. V. 30, Iss. 1. P. 209-216. DOI: 10.1016/j.proci.2004.07.042

12. Гельфанд Б.Е., Попов О.Е., Чайванов Б.Б. Водород: параметры горения и взрыва. М.: Физматлит, 2008. 288 с.

13. Ma F., Naeve N., Wang L. Hydrogen-enriched compressed natural gas as a fuel for engines // Natural Gas. 2010. P. 307-333. DOI: 10.5772/9852

14. Mohammed S.E., Baharom M.B., Aziz A.R.A. Analysis of engine characteristics and emissions fueled by in-situ mixing of small amount of hydrogen in CNG // International Journal of Hydrogen Energy. 2011. V. 36, Iss. 6. Р. 4029-4037. DOI: 10.1016/j.ijhydene.2010.12.065

15. Ceper B.A. Usability of hydrogen–natural gas mixtures in internal combustion engines. Phd thesis. Erciyes Unversity, Institute of Natural Sciences, 2009. 230 р.

16. Negurescu N., Pana C., Cernat A. Aspects of using hydrogen in SI engine // UPB Scientific Bulletin, Series D: Mechanical Engineering. 2012. V. 74, Iss. 1. Р. 11-20.

17. Бортников Л.Н., Павлов Д.А., Русаков М.М., Шайкин А.П. Состав продуктов сгорания бензоводородовоздушных смесей в сферической камере постоянного объёма // Химическая физика. 2011. Т. 30, № 1. С. 56-65.

18. Арутюнов В.С., Борисов А.А., Политенкова Г.Г., Рахметов А.Н., Трошин К.Я. Влияние добавок водорода на нижний концентрационный предел воспламенения метана // Горение и взрыв. 2012. № 5. С. 28-32.

19. Cho E.-S., Chung S.H. Improvement of flame stability and NOx reduction in hydrogen-added ultra lean premixed combustion // Journal of Mechanical Science and Technology. 2009. V. 23, Iss. 3. Р. 650-658. DOI: 10.1007/s12206-008-1223-x


DOI: http://dx.doi.org/10.18287/2541-7533-2017-16-4-91-100

Ссылки

  • Ссылки не определены.


 

Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 International License.

 

ISSN: 2541-7533