Локально-оптимальное управление движением электроракетного буксира между точками либрации системы Земля – Луна

О. Л. Старинова, М. К. Файн

Аннотация


Рассматривается локально-оптимальное управление движением электроракетного буксира между точками либрации системы Земля – Луна с использованием двигателей малой тяги. Программа управления получена с помощью метода Федоренко для нахождения производных и градиентного метода с переменным шагом для оптимизации законов управления. Все перелёты рассматривались в рамках ограниченной задачи трёх тел. Математическая модель перелётов описана в барицентрической системе координат. В качестве критерия оптимизации принято полное время перелёта. Учтены возмущения от Земли, Луны и Солнца. Рассмотрено влияние теневых зон, создаваемых Землёй и Луной. В результате оптимизации получены законы управления, траектории и значения общего времени перелёта.


Ключ. слова


Электроракетный буксир; космический аппарат; двигатель малой тяги; баллистическая оптимизация; система Земля – Луна; точка либрации

Полный текст:

PDF

Список литературы

1. Betts J.T., Erb S.O. Optimal low thrust trajectories to the moon // SIAM Journal on Applied Dynamical Systems. 2003. V. 2, Iss. 2. P. 144-170. DOI: 10.1137/s1111111102409080

2. McKay R., Macdonald M., Biggs J., McInnes C. Survey of highly non-Keplerian orbits with low-thrust propulsion // Journal of Guidance, Control, and Dynamics. 2011. V. 34, Iss. 3. P. 645-666. DOI: 10.2514/1.52133

3. Starinova O.L., Kurochkin D.V., Materova I.L. Optimal control choice of non-Keplerian orbits with low-thrust propulsion // AIP Conference Proceedings. 2012. V. 1493. P. 964-971. DOI: 10.1063/1.4765603

4. Loeb H.W., Feili D., Popov G.A., Obukhov V.A., Balashov V.V., Mogulkin A.I., Murashkov V.M., Nesterenko A.N., Khartov S. Design of High-Power High-Specific Impulse RF-Ion Thruster // Proceedings 32nd International Electric Propulsion Conference. 2011.

5. Jones R.M. Comparison of potential electric propulsion systems for orbit transfer // Journal of Spacecraft and Rockets. 1984. V. 21, Iss. 1. P. 88-95. DOI: 10.2514/3.8612

6. Rayman M.D., Williams S.N. Design of the first interplanetary solar electric propulsion mission // Journal of Spacecraft and Rockets. 2002. V. 39, Iss. 4. P. 589-595. DOI: 10.2514/2.3848

7. Andrews D.G., Wetzel E.D. Solar Electric Space Tug to Support Moon and Mars Exploration Missions // Collection of Technical Papers - AIAA Space 2005 Conference and Exposition. 2005. V. 2. P. 1045-1055.

8. Starinova O.L., Fain M.K. Ballistic Optimization of the L1-L2 and L1-L2 Low Thrust Transfers in the Earth-Moon System // Recent Advances in Space Technologies. 2015. P. 95-98.

9. Kazmerchuk P.V., Malyshev V.V., Usachev V.E. Method for optimization of trajectories including gravitational maneuvers of a spacecraft with a solar sail // Journal of Computer and Systems Sciences International. 2007. V. 46, Iss. 1. P. 150-161. DOI: 10.1134/S1064230707010170

10. Starinova O.L. Optimization methods of laws control of electric propulsion spacecraft in the restricted three-body task // AIP Conference Proceedings. 2014. V. 1637. DOI: 10.1063/1.4904680

11. Ozimek M.T., Howell K.C. Low-thrust transfers in the Earth-Moon system, including applications to libration point orbits // Journal of Guidance, Control, and Dynamics. 2010. V. 33, Iss. 2. P. 533-549. DOI: 10.2514/1.43179


DOI: http://dx.doi.org/10.18287/2541-7533-2017-16-3-114-124

Ссылки

  • Ссылки не определены.


 

Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 International License.

 

ISSN: 2541-7533