Kinetic equation of stable growth for low cycle fatigue cracks


Cite item

Full Text

Abstract

Based on the analysis of the literature data on the correlation of parameters of the empirical Paris equation that links the fatigue crack growth rate (FCGR) with the stress intensity factor (SIF) range by power dependence it is established that the equation contains a latent parameter normalizing the magnitude of the SIF range, while both the parameter itself and the coefficient of proportionality between FCGR and some power of normalized SIF range are constant or slightly changing magnitudes for alloys of different types on the same basis. For reasons of dimension and symmetry analysis the nature of this parameter as well as the magnitudes of the proportionality coefficient and the index of power are determined. As a result a kinetic equation is obtained coinciding with the kinetic equation for low cycle fatigue (LCF) crack stable growth deduced earlier using a physically justified mathematical model. The same equation is obtained on the basis of experimental data that describe the LCF crack kinetics in standard specimens at the stage of crack stable growth with the use of fatigue striations as a FCGR measure. Examples of application of the kinetic equation for LCF crack stable growth modeling in aero engine disks are presented.

About the authors

N. V. Tumanov

Central Institute of Aviation Motors

Author for correspondence.
Email: tumanov@rtc.ciam.ru

Candidate of Science (Engineering)

Head of Sector

Russian Federation

References

  1. Mechanics of catastrophes. Determination of crack resistance characteristics of structural materials / ed. by Ye.M. Morozov. Мoscow: Mezhdunarodnyy institut bezopasnosti slozhnykh tekhnicheskikh system Publ., 1995. 359 p.
  2. Romvari P., Tot L., Nad D. Analysis of irregularities in the distribution of fatigue cracks in metals // Strength of Materials. V. 12, no. 12. 1980. P. 1481-1492. doi: 10.1007/bf00762146
  3. Paris P., Erdogan F. A critical analysis of crack propagation laws // Journal of Basic Engineering (Trans. ASME). 1963. No. 12. P. 528-534. doi: 10.1115/1.3656900
  4. Niccolls E.H. A correlation for fatigue crack growth rate // Scripta Metallurgica. 1976. V. 10, no. 4. P. 295-298.
  5. Tanaka K., Matsuoka S. A tentative explanation for two parameters, C and m, in Paris equation of fatigue crack growth // Int. Journal of Fracture. 1977. V. 13, no. 5. P. 563-584. doi: 10.1007/bf00017293
  6. Yarema S.Ya. Correlation of the parameters of the Paris equation and
  7. the cyclic crack resistance characteristics of materials // Strength of Materials. 1981. V. 13, no. 9. P. 20-28.
  8. Potapov S.D., Perepelitsa D.D. Tests for Cyclic Crack Growth Rate in Materials of Critical Aircraft Gas-Turbine Engine Components // Technology of light alloys. 2013. No. 2. P. 5-19. (In Russ.)
  9. Golubovski Ye.R., Volkov M. Ye., Emausski N.M. Estimation of fatigue crack growth rate in nickel alloys for aero engine disks // Vestnik dvigatelestroeniya. 2013. No. 2. P. 229-235. (In Russ.)
  10. Bridgman P.W. Analiz razmernostey [Dimensional analysis]. M.-L.: ONTI-GTTI Publ., 1934. 120 p.
  11. Einstein A. Elementarnoe rassmotrenie teplovogo dvizheniya molekul v tverdykh telakh [Study of thermal motion of molecules in solids. Proceedings in 4 volumes]. V. 3. Мoscow: Nauka Publ., 1966. P. 253-264.
  12. Tumanov N.V. Fatigue crack kinetic stages and mechanism of periodic splitting-rupture // Proceedings of the 1st International Conference «Deformation and fracture of materials». V. 1. Moscow: IMET RAN Publ., 2006. P. 85-87. (In Russ.)
  13. Tumanov N.V., Lavrentyeva M.A., Cherkasova S.A. Reconstitution and prediction of fatigue crack propagation in aero engine disks // Conversion in machine building of Russia. 2005. No. 4-5. P. 98-106. (In Russ.)
  14. Tumanov N.V., Lavrentyeva M.A., Cherkasova S.A., Servetnik A.N. Modeling stable growth of fatigue cracks in aero engine turbine disks under simple and complex loading cycles // Vestnik of the Samara State Aerospace University. 2009. No. 3(19), part 1. P. 188-199. (In Russ.)
  15. Tumanov N.V., Lavrentyeva M.A. Fundamental and applied aspects of fatigue crack kinetics // Proceedings of the 2nd International Conference «Fundamental investigation and innovative technology in machine building». Moscow: IMASH RAN Publ., 2012. P. 442-448. (In Russ.)
  16. Ekobori T. Nauchnye osnovy prochnosti i razrusheniya [Scientific foundations of strength and fracture]. Kiev: Naukova dumka Publ., 1978. 352p.
  17. Bates R.C., Clark W.G. Fractography and fracture mechanics // Trans. ASM. 1969. V. 62, no. 2. P. 380-389.
  18. Yakovleva T. Yu. Lokal'naya plasticheskaya deformatsiya i ustalost' metallov [Local plastic deformation and fatigue of metals]. Kiev: Naukova dumka Publ., 2003. 236 p.
  19. Tumanov N.V., Lavrentyeva M.A. Conception of cycle life additivity and its application for the estimation of cycle life of aero engine disks // Vestnik of the Samara State Aerospace University. 2014. No. 5(47), part 2. P. 9-19. (In Russ.) doi: 10.18287/1998-6629-2014-0-5-1(47)-9-17
  20. Kishkina S.I. Soprotivlenie razrusheniyu alyuminievykh splavov [Failure resistance of aluminium alloys]. Moscow: Metallurgia Publ., 1981. 280 p.
  21. Rybin V.V., Patsiornykh A.I., Poliektov Yu.I. Singularities of the fracture of high-strength cast steels in low-endurance fatigue // Strength of Materials. 1975. V. 7, no. 6. P. 687-695.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2015 VESTNIK of the Samara State Aerospace University

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies