ОПТИМИЗАЦИЯ ТЕРМОМЕХАНИЧЕСКИХ РЕЖИМОВ
ГОРЯЧЕЙ ШТАМПОВКИ ТИТАНОВЫХ СПЛАВОВ
ПРИ ВЫСОКОСКОРОСТНОМ НАГРУЖЕНИИ

© 2011 А. И. Хаймович, В. А. Михеев

Самарский государственный аэрокосмический университет имени академика С. П. Королёва (национальный исследовательский университет)

Поставлена и решена задача определения термомеханических режимов деформирования титановых сплавов при импульсном деформировании на основе математической модели, обобщающей результаты экспериментов по высокоскоростной осадке титановых образцов.

Титановые сплавы, степень деформации, скорость деформации, диаграмма рекристаллизации, импульсные нагрузки, термомеханические режимы деформирования.

В настоящее время одним из перспективных методов получения точных заготовок деталей является высокоскоростное объёмное деформирование на молотах и прессах при скоростях падающих частей молотов 30...40 м/с, что обеспечивает наиболее полное заполнение гравюры штампов за счёт кинетического напора разогнанной при динамическом нагружении массы штампируемого материала.

Повышенные требования к физико-механическим свойствам материала, конфигурации и геометрическим размерам точных штамповок требуют научно обоснованного подхода к разработке технологических процессов их изготовления. Основы термомеханических режимов деформирования металлов на молотах и прессах достаточно полно изложены в технической литературе. Повышение скорости деформирования с 1,5...9,0 до 30...40 м/с требует их уточнения [1, 2].

При разработке оптимальных термомеханических режимов высокоскоростного объёмного деформирования используется классический подход к оценке зависимости пластичности, структуры и механических свойств материала от температуры, степени и скорости деформации, рекомендуемой теорией обработки металлов давлением. Хорошо известна корреляционная связь между мелкозернистой структурой и высокими механическими свойствами титановых сплавов, поэтому оптимальные термомеханические режимы деформирования обеспечивают требуемые микроструктурные изменения и измельчение зерна [3].

Решение задачи нахождения оптимальной температуры T нагрева исходных заготовок в зависимости от степени деформации δ и скорости деформации ν с целью формирования мелкозернистой структуры штампованных заготовок из титановых сплавов типа ВТ9 в терминах и постановке оптимизационной задачи определяется противоположным влиянием указанных факторов на целевую функцию и наличием ограничений по технологической пластичности.

Технологические ограничения, связанные с совместным влиянием температуры, степени и скорости деформирования (T, δ, ν) на технологическую пластичность и микроструктуру материала обусловлены следующими фактами. Известно, что титановый сплав ВТ9 относится к группе деформируемых сплавов мартенситного класса с α+β фазовой структурой (kп = 0,3–0,9). Легирование сплава алюминием (α-стабилизатор, который повышает температуру полиморфного превращения) и молибденом (β-изоморфный стабилизатор, который расширяет область твёрдых растворов на основе β-титана) позволяет сохранить устойчивую α+β фазу в широком интервале температур, что обеспе-
чиает оптимальное сочетание пластичности и прочностных свойств. Однако штамповка с высокими степенями деформации более 40% в α+β области имеет существенные ограничения по пластичности, особенно в условиях одноосного нагружения, а деформирование при нагреве выше температуры полиморфного превращения (980–1020°C для ВТ8, ВТ9) в β-области приводит к образованию итальянской структуры с наличием границ первичного зерна β-фазы, что приводит к браку – снижению прочности и пластичности, поскольку нерегулярную структуру исправить термической обработкой невозможно.

В целом задача оптимизации термомеханических режимов деформирования может формулироваться следующим образом.

Имеются экспериментальные данные зависимости величины D микротвердости сплава ВТ9 от температуры T нагрева исходных заготовок под высокоскоростное деформирование, степени деформации ε, скорости деформации $\dot{\varepsilon}$ в форме семейства диаграмм динамической рекристаллизации (1) и диаграмм пластичности (2):

$$D_j = f(T, \varepsilon, \dot{\varepsilon}_j), \ j = 0, n, \quad (1)$$

где n – количество групп экспериментов с разными скоростями деформирования $\dot{\varepsilon}_j$;

$$\varepsilon_{\text{пр}} = \varepsilon(T, \dot{\varepsilon}_j), \quad (2)$$

где $\varepsilon_{\text{пр}}$ – технологическая пластичность – предельная степень деформации, при которой наблюдается появление следов разрушения деформируемого образца, соответствующая скорость деформирования $\dot{\varepsilon}_j$.

Укрупнённо решение поставленной задачи сводится к следующему: в заданном технологически осуществимом диапазоне значений ε и $\dot{\varepsilon}$ требуется определить значения температуры деформирования T, при которой удаётся получить минимальное зерно без потери пластичности.

В формализованном виде имеем:

область определения: $x = \{T, \varepsilon, \dot{\varepsilon}\}; \quad (3)$

область допустимых значений на множестве Y:

$$X = \{x \mid \varepsilon(T, \dot{\varepsilon}) \geq \varepsilon_{\text{пр}}, T \leq T_n\} \subset Y, \quad (4)$$

где Y - область эксперимента, T_n - температура полиморфного превращения $\alpha \leftrightarrow \beta$ фаз,

$$Y = \{x \mid 0 < T < 1200^\circ C, \ 0 < \varepsilon < 100\%, \ 5 \cdot 10^2 c^{-1} < \dot{\varepsilon} < 3 \cdot 10^3 c^{-1}\} . \quad (5)$$

Целевая функция $f(x) = f(T, \varepsilon, \dot{\varepsilon})$ есть отображение функции динамической рекристаллизации на множество допустимых значений:

$$f(T, \varepsilon, \dot{\varepsilon}_j) : X(x \mid \varepsilon(T, \dot{\varepsilon}) \geq \varepsilon_{\text{пр}}, T \leq T_n) \to Y, \quad T = T(\varepsilon, \dot{\varepsilon}_j), \quad (6)$$

где T - искомая функция, удовлетворяющая критерию поиска

$$T = T(\varepsilon, \dot{\varepsilon}_j); \quad (7)$$

$$f(T, \varepsilon, \dot{\varepsilon}_j) \to \min_{T, \varepsilon, \dot{\varepsilon}_j \in X}. \quad (8)$$

Эксперименты по определению технологической пластичности заключались в высокоскоростной осадке цилиндрических образцов из сплава ВТ9 со скоростями деформирования 20, 30 и 75 м/с на молоте с пороховым приводом МВДМ2. Результаты экспериментов представлены на рис. 1.

Аналisis диаграммы показывает, что при осадке образцов, нагретых до температуры 850°C, признаки разрушения наблюдаются при степенах деформирования более 55% и скорости деформирования 75 м/с. С уменьшением скорости деформирования предельная степень деформации повышается и при скорости 20 м/с достигает 80%. С повышением температуры нагрева образцов пластичность сплава увеличивается и влияние скорости деформирования на допустимую степень деформации уменьшается. При температуре нагрева образцов выше 950°C сплав ВТ9 обладает неограниченной пластичностью, влияние скорости деформирования на допустимую степень деформации не наблю-
дается. Снижение пластичности сплава от увеличения скорости деформации в диапазоне температуры нагрева заготовок 850...950°C связано с интенсивностью упрочнения сплава, которая в значительной степени зависит от температуры и времени протекания процесса деформации.

Для формализованного описания диаграммы пластичности сплава ВТ9 в форме ограничений (2) была использована кусочно-линейная регрессия с переломом в области \(T_a \) в виде модели (9). Неизвестные коэффициенты модели, приведённые в табл. 1, рассчитывались методом минимизации квадратичных отклонений в программном пакете Statistica компании StatSoft:

\[
\begin{align*}
\varepsilon_{\text{пр}} &= a_0^1 + a_1^1 T + a_2^1 \varepsilon, \quad \varepsilon_{\text{пр}} \leq \varepsilon(T_a) , \\
\varepsilon_{\text{пр}} &= a_0^2 + a_1^2 T + a_2^2 \varepsilon , \quad \varepsilon_{\text{пр}} > \varepsilon(T_a),
\end{align*}
\]

где \(\varepsilon(T_a) \) - точка излома;

\[
\varepsilon_{\text{пр}} = (1 - \frac{h_{\text{оп}}}{H}) \cdot 100\% \quad \text{критическая степень деформации для осадки, соответствующая высоте } h_{\text{оп}} \text{ осаженного образца, при котором появляются следы разрушения.}
\]

Следует отметить, что зависимость (9) учитывает общую (усреднённую) степень деформации \(\varepsilon = (1 - \frac{h}{H}) \cdot 100\% \), хотя разрушение наблюдается в областях очага пластической деформации, где локальная степень деформации достигает максимальной величины. Для оценки истинных предельных степеней деформации, при которых происходит разрушение, целесообразно ввести поправочный коэффициент \(k_s \), учитывающий неравномерность деформации при осадке.

Определим коэффициент неравномерности деформации как \(k_s = \frac{\varepsilon_{\text{пр}}}{\varepsilon} \) - отноше-

Таблица 1

<table>
<thead>
<tr>
<th>(a_0)</th>
<th>(a_1)</th>
<th>(a_2)</th>
<th>(a_0^2)</th>
<th>(a_1^2)</th>
<th>(a_2^2)</th>
<th>(\varepsilon(T_a))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,575903</td>
<td>0,116051</td>
<td>-0,028447</td>
<td>87,21237</td>
<td>0,005962</td>
<td>-0,000323</td>
<td>85,56733</td>
</tr>
</tbody>
</table>
ние максимальной локальной степени деформации ε_{max} к общей степени ε. Для определения численного значения k_a при высокоскоростной осадке проводился экспериментальный анализ распределения деформации по высоте осаженных образцов в зависимости от скорости деформирования и температуры их нагрева. Общая степень деформации составляла 10, 30 и 50 %. Локальные степени деформации рассчитывались по 10 равнодалёким штифтам, установленным по образующей цилиндрических образцов до их осадки. Из графиков, представленных на рис. 2, видно, что распределение деформации по высоте образцов имеет различный

Рис. 2. Кривые распределения истинных степеней деформаций по высоте осаженных образцов из титанового сплава BT9 со скоростями деформирования:

- \Box - 80 м/с;
- \bullet - 40 м/с;
- \bigcirc - 20 м/с

123
характер и зависит от скорости деформирования.

Если при статическом деформировании по мере удаления от середины образца значение истинной степени деформации уменьшается и у поверхности контакта с инструментом становится минимальным, то с увеличением скорости деформирования область максимальных значений истинной степени деформации сдвигается в сторону торца, не посредственно воспринимающего ударную нагрузку. При более высоких скоростях деформирования распространение деформаций происходит равномернее. С увеличением температуры нагрева и общей степени деформации образцов влияние скорости деформирования на распределение деформаций уменьшается.

Статистический анализ влияния параметров $\varepsilon, \varepsilon, T$ и их парных сочетаний на k_n позволил выявить статистически значимые коэффициенты при параметрах и представить регрессионную модель для k_n в виде зависимости, обобщающей экспериментальные данные, приведённые на рис. 3:

$$k_n = \frac{\varepsilon_{\text{max}}}{\varepsilon} = 3,233 + 0,454 \cdot 10^{-3} \varepsilon^2 + 0,59 \cdot 10^{-4} \varepsilon \cdot T.$$

(10)

Аппроксимирующий график зависимости коэффициента неравномерности деформации от параметров осадки в форме (10) представлен на рис. 3. Анализ графика показывает, что с ростом температуры деформирования (около температуры полиморфных превращений и выше) и повышением степени деформации коэффициент неравномерности k_n уменьшается. При деформировании при температурах, близких к α-области, с повышением степени деформации более 20% наблюдается резкое увеличение неравномерности деформации, значение коэффициента k_n достигает значения трёх и выше.

Таким образом, при штамповке титановых сплавов в α-области со степенями, близкими к 50 $\%$, деформация локализуется в компактной зоне, где накопление дефектов в кристаллической решётке приводит к разрушению образцов. В этой связи коэффициент неравномерности деформации k_n для

Рис. 3. Зависимость коэффициента неравномерности деформации от температуры и степени деформации
технологического процесса объёмного ско-
ростного деформирования титановых спла-
vов в α и частично $\alpha+\beta$ областях целесооб-
разно использовать в качестве критерия, ха-
рактеризующего степень риска локального
разрушения. Иными словами, правомочно
выражение

$$\varepsilon_{\text{вон}} < \frac{\varepsilon_{\text{кр}}}{a}, \quad a = \frac{k_\alpha}{k_\beta},$$ \hspace{1cm} (11)$$

gде $\varepsilon_{\text{вон}}$ - допустимая степень деформации
для рассматриваемого технологического про-
цесса; $\varepsilon_{\text{кр}}$ - критическая степень деформа-
cии, полученная для осадки в соответствии
с зависимостью (9); k_α и k_β - соответстven-
но коэффициенты неравномерности деформа-
cии для рассматриваемого процесса и для
процесса скоростной осадки.

Для определения области значений це-
левой функции $f(x) = f(T, \varepsilon, \dot{\varepsilon})$ проведе-
ны исследования деформационной рекри-
сталлизации сплава VT9 методом скоростной
осадки заготовок, изготовленных из катаных
прутков с равноосной $\alpha+\beta$-структуры, в ус-
ловиях переменных режимов горячего де-
формирования (скорость деформирования
20, 40, 80 м/с, температура нагрева исходных
образцов 1150°C, истинная степень деформа-
ции 5... 80 %).

Результаты экспериментов в виде диаг-
рамм рекристаллизации представлены на
рис. 4.

Как показывает анализ диаграмм рекри-
сталлизации (рис. 4) в диапазоне темпе-
ратура деформирования 850...1000°C, микро-
структура при всех степенях деформации
получается мелкая, с невидимым микрозер-
ном. При переходе в β-область величина зё-
рен возрастает, особенно при степенях де-
формации ниже 30 %. Зёрна тем крупнее, чем
выше температура нагрева образцов. При
степенях деформации выше 30 % начинает-
ся измельчение зёрен. Наиболее резкое из-
мельчение наблюдается в области степеней
деформации 30±55 %. Дальнейшее увеличе-
ние степени деформации к существенному
уменьшению размера зёрен не приводит. На
диаграммах рекристаллизации чётко выде-
lаются две области: $\alpha+\beta$ при температуре на-
грева образцов до 1000°C и β при темпера-
туре выше 1000°C. При деформировании
сплава ВТ9 в области $\alpha+\beta$ получается мел-
зернистая структура при всех степенях де-
формации. Деформирование сплава до сте-
пеней деформации 10% в области β приводит
к росту зерна. С увеличением степени дефор-
мации величина зерна уменьшается. При по-
вышении температуры деформирования на-
блидается увеличение зерна. Изменение ско-
рости деформирования в рассматриваемом
диапазоне существенного влияния на харак-

![Diagram](image1)

Рис. 4. Диаграммы рекристаллизации сплава ВТ9 в зависимости от температуры нагрева и степени деформации
тер кривых диаграмм рекристаллизации не оказывает.

Рассматриваемая задача оптимизации - определение температур деформирования T, при которых удаётся получить минимальное зерно без потери пластичности в заданном технологически осуществимом диапазоне значений ε и $\dot{\varepsilon}$ в форме (4)-(8), может быть решена методом поиска глобального экстремума.

Для решения оптимизационной задачи аппроксимируем облако экспериментальных точек диаграммы рекристаллизации $f(T, \varepsilon, \dot{\varepsilon})$ (рис. 5) аналитической выпуклой функцией с глобальным экстремумом:

$$f(T, \varepsilon, \dot{\varepsilon}) = b_0 + b_1 T^2 + b_2 T + b_3 \varepsilon^2 + b_4 \varepsilon + b_5 \dot{\varepsilon} T. \tag{12}$$

Наличие глобального экстремума обусловлено квадратичной формой аппроксимирующей зависимости, а инвариантно по отношению к скорости деформирования $\dot{\varepsilon}$ в (12) очевидна из анализа диаграмм рекристаллизации (рис. 4).

Неизвестные коэффициенты b в (12) рассчитаны по экспериментальным данным методом минимизации квадратичных отклонений в программном пакете Statistica. Поверхность, аппроксимирующая данные эксперимента в соответствии с зависимостью (12), представлена на рис. 5.

Имеем

$$\frac{\partial f(T, \varepsilon, \dot{\varepsilon})}{\partial T} = 2b_3 T + b_1 + b_5 \varepsilon = 0, \tag{13}$$

откуда с учётом значений коэффициентов получим

$$T = -\frac{b_1 + b_5 \varepsilon}{2b_3} = 2,071\varepsilon + 790,4. \tag{14}$$

Зависимость (14) описывает исковые оптимальные значения температур деформирования с ограничениями, полученными в соответствии с зависимостями (9)-(11):

$$\begin{align*}
\varepsilon_{xp} &= 2,576 + 0,116T - 0,028\dot{\varepsilon} \quad \text{при} \ T \leq 850^\circ\text{C}, \\
\varepsilon_{xp} &= 85\% \quad \text{при} \ T > 850^\circ\text{C}, \\
k_y &= 3,233 + 0,254 \cdot 10^{-3} \varepsilon^2 + 0,59 \cdot 10^{-4} \varepsilon T, \\
\varepsilon_{\Delta m} &= \frac{k_y}{k_w}. \tag{15}
\end{align*}$$

Рис. 5. Аппроксимирующая поверхность отклика величины зерна сплава ВФ9 в зависимости от температуры и степени деформации

126
Решая (15) относительно температуры, получаем решение оптимизационной задачи в форме (5)-(8) для оптимальной температуры деформирования $T_{\text{ом}} = f(\varepsilon, \dot{\varepsilon})$ в виде зависимостей:

\[
\begin{aligned}
T_{\text{ом}} &= 2,071\varepsilon_{\text{ом}} + 790,4, \\
T_{\text{ом}} &\geq 8,621 - 22,21\varepsilon_{\text{ом}} + 0,241\dot{\varepsilon} \text{ при } \varepsilon_{\text{ом}} < 85\%, \\
T_{\text{ом}} &\geq 950^\circ C \text{ при } \varepsilon_{\text{ом}} \geq 85\%, \\
\varepsilon_{\text{ом}} &= \frac{c}{3,233 + 0,254 \cdot 10^{-3} \varepsilon^2 + 0,59 \cdot 10^{-4} \varepsilon T_{\text{ом}}}, \\
800^\circ C < T_{\text{ом}}, T_{\text{ом}} &< 1200^\circ C.
\end{aligned}
\]

(16)

Графическое решение зависимостей (16) при $k_u = k_n$ и $\varepsilon_{\text{ом}} = \varepsilon$ представлено на рис. 6.

Проведённые исследования позволяют сделать следующие выводы:

1. Поставлена и решена задача определения термомеханических режимов деформирования титановых сплавов в импульсном деформировании на основе математической модели, обобщающей результаты экспериментов по высокоскоростной осадке титановых образцов. Предложенная модель позволяет решить оптимизационную задачу с целевой функцией в виде зависимости размеров микролент от температуры деформирования как параметра оптимизации, а также степени и скорости деформации как ограничивающих параметров.

2. Оптимальные температуры деформирования для титанового сплава BT9 для степеней деформации до 50% лежат в диапазоне 850° - 900°С для любых скоростей деформации в диапазоне 5.10² c⁻¹ - 3.10³ c⁻¹.

3. При степенях деформации выше 60% минимально допустимые температуры деформирования для скоростей деформаций выше 2.10⁴ c⁻¹ лежат в области выше 910°С.

4. Для скоростей деформирования ниже 5.10² c⁻¹ и высоких степеней деформации (70% и более) оптимальной температурой деформирования можно считать температуру в диапазоне 900°-950°C.

5. Пластичность сплава BT9 сильно зависит от скорости деформаций и снижается с её увеличением, однако при температурах деформирования выше 950°С сплав обладает практически неограниченной пластичностью.

Рис. 6. Зависимость оптимальной температуры деформирования сплава BT9 от степени деформации и скорости деформирования. Кривые ограничения минимальной температуры деформирования:

1 – $\dot{\varepsilon} =5.10^4$ c⁻¹; 2 – $\dot{\varepsilon} =1.33 \cdot 10^5$ c⁻¹; 3 – $\dot{\varepsilon} = 2.17 \cdot 10^6$ c⁻¹; 4 – $\dot{\varepsilon} =3\cdot 10^7$ c⁻¹
OPTIMIZATION OF THERMOMECHANICAL PARAMETERS OF HIGH SPEED FORGING OF TITANIUM ALLOYS

© 2011 A. I. Khaimovich, V. A. Mikheyev

Samara State Aerospace University named after academician S. P. Korolyov (National Research University)

The solved problem deals with the definition of forging thermomechanical parameters of titanium alloys in conditions of pulse loading. The solution is based on the mathematical model, which generalizes the results of experiments on high-speed upsetting of titanium samples.

Titanium alloys, extent of deformation, rate of deformation, grain recrystallization diagram, pulse loadings, thermomechanical parameters of deformation.

Информация об авторах

Хаймович Александр Исаакович, доцент, кандидат технических наук, доцент кафедры производства двигателей летательных аппаратов Самарского государственного аэрокосмического университета имени академика С. П. Королёва (национального исследовательского университета). E-mail: kovalek68@mail.ru. Область научных интересов: технология машиностроения.

Михеев Владимир Александрович, профессор, доктор технических наук, заведующий кафедрой технологии металлов и авиаматериаловедения Самарского государственного аэрокосмического университета имени академика С. П. Королёва (национального исследовательского университета). E-mail: vamicheev@rambler.ru. Область научных интересов: технология машиностроения.

Khaimovich Aleksander Isaakovitch, candidate of technical science, associate professor of the department of aircraft engine production, Samara State Aerospace University named after academician S. P. Korolyov (National Research University), kovalek68@mail.ru. Area of research: technology of mechanical engineering.

Mikheyev Vladimir Alexandrovitch, doctor of technical science, professor, department of plastic working of metals, Samara State Aerospace University named after academician S. P. Korolyov (National Research University), e-mail: vamicheev@rambler.ru. Area of research: technology of mechanical engineering.