УДК 621.822.84: 621.891.272

СКОЛЬЖЕНИЕ В МЕЖВАЛЬНОМ РОЛИКОВОМ ПОДШИПНИКЕ ГТД

© 2009 В. В. Макарчук¹, Н. И. Петров², В. И. Акифьев³

¹Завод авиационных подшипников, г. Самара ²Центральный институт авиационного моторостроения им. П.И. Баранова, г. Москва ³Самарский государственный аэрокосмический университет

Приведены результаты экспериментального исследования и теоретического расчета скольжения сепаратора в цилиндрическом роликовом межвальном подшипнике газотурбинного двигателя.

Подшинник, проскальзывание, скольжение сепаратора, ролик, газотурбинный двигатель

Проскальзывание комплекта тел качения и связанные с ним дефекты рабочих поверхностей являются наиболее распространенной причиной потери работоспособности межвальных подшипников авиационных газотурбинных двигателей [1]. Основные положения теории расчета на проскальзывание высокоскоростных роликовых подшипников изложены в работах [2,3].

Вместе с тем в указанных работах при анализе условий силового равновесия комплекта тел качения и сепаратора принято, что силы трения в контактах роликов с кольцами определяются лишь сдвигом смазочных слоев при проскальзывании. При этом не учитываются условия трения в кон-

тактах шероховатых поверхностей при неполном разделении их слоем смазки.

Кроме того, в указанных работах не учитываются особенности работы межвальных подшипников при различных соотношениях скоростей вращения внутреннего и наружного колец. В этой связи теоретические расчеты по программе, основанной на методике работы [3], дают значения проскальзывания сепаратора, значительно превышающие полученные в работе [4] экспериментально.

На рис. 1 приведена схема узла испытаний межвальных и межроторных подшипников.

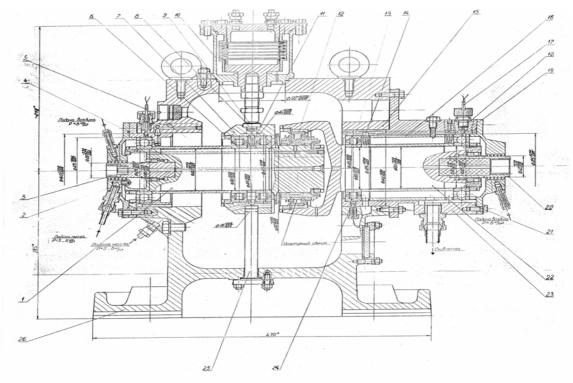
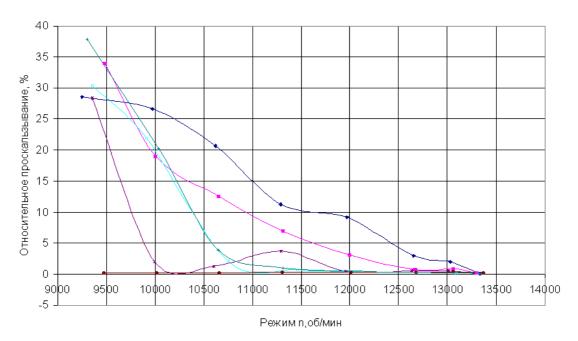



Рис. 1. Узел испытаний межвальных подшипников

Измерения частот вращения колец осуществлялась индукционными датчиками. Частота вращения сепаратора измерялась токовихревым преобразователем. Все частоты вращения в интервале 0,10 ... 0,12 с⁻¹ одновременно регистрировались на компьютер с последующим спектральным анализом. Величина проскальзывания определялась сравнением теоретической (расчетной) частоты вращения сепаратора с фактической, измеренной на каждом режиме.

На рис. 2 приведены результаты испытаний подшипника 55-2672919Р5 при различных значениях радиального зазора при смазке маслом ИПМ-10. Величины проскальзывания сепаратора приведены в зависимости от частоты вращения наружного кольца. При этом частоты вращения внутреннего кольца соответствовали режимам

работы подшипника в изделии. В результате получено уменьшение значения проскальзывания сепаратора по мере роста частот вращения колец. Это противоречит общепринятым представлениям об увеличении проскальзывания с увеличением частоты вращения подшипника. Однако по нашему мнению в межвальных и межроторных подшипниках проскальзывание зависит не от абсолютных значений частот вращения внутреннего и наружного колец, а от их разности (от «скольжения роторов»). Экспериментальные зависимости проскальзывания в подшипнике от разности частот вращения колец приведены на рис. 3 при нагрузке F_r =50 H и различных значениях радиального зазора. Видно увеличение проскальзывания с увеличением «скольжения роторов».

Puc.2. Зависимость проскальзывания сепаратора с комплектом роликов в подшипнике при F_r =50 H от частоты вращения и величины радиального зазора

Для теоретического расчета проскальзывания сепаратора в подшипнике используется методика работы [3], в которой сделаны уточнения зависимостей для расчета сил трения в контактах роликов с кольцами по рекомендациям работы [5]. При малых толщинах смазочных слоев потери на трение определяются как касательными напряжениями в слое смазки, так и трением в контактах выступов шероховатых металлических поверхностей контактирующих тел.

Составляющая силы трения, определяемая напряжениями сдвига смазочного слоя, находится по методике работы [3]. При расчете толщины смазочного слоя используется среднее значение температуры смазки в контакте. Составляющую силы трения, определяемую взаимодействием контактов шероховатых поверхностей, можно определить по рекомендациям [6] или принять приближенно по результатам экспериментов.

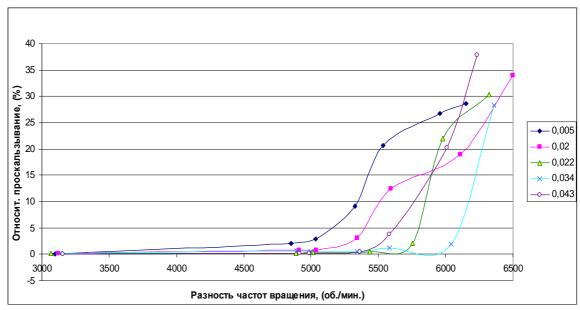


Рис.3. Зависимость проскальзывания сепаратора с комплектом роликов от разности частот вращения колец при различных значениях радиального зазора

Величина коэффициента трения в смазываемом контакте шероховатых поверхностей определяется суммированием:

$$f = f_{cm}(1-\eta) + f_{mem}\eta.$$

При этом относительная площадь металлического контакта приближенно определяется по формуле:

$$\eta = t_p / 2$$
.

Здесь для нормального закона распределения высот микронеровностей относительную опорную длину профиля [6] можно вычислить по формуле:

$$t_p = 0.5 - \Phi(\lambda),$$

где $\Phi(\lambda)$ - интеграл вероятности, λ - параметр, характеризующий режим смазывания в УГД контакте. По рекомендациям Т. Тальяна

$$\lambda = h_0/R_{c\kappa}$$
.

Величину среднего квадратичного отклонения приведенного профиля шероховатой поверхности можно принять равной:

$$R_{c\kappa} = \sqrt{R_{a1}^2 + R_{a2}^2} \; .$$

Здесь R_{a1} и R_{a2} - средние арифметические отклонения шероховатых поверхностей роликов и колец.

На рис. 4...7 приведены сравнения теоретических и экспериментальных значений проскальзывания сепаратора в зависимости от разности частот вращения колец при радиальной нагрузке 0,5 кН. Кроме того, на рисунках приведены значения температуры подшипника в экспериментах.

Результаты расчетов имеют удовлетворительное соответствие с экспериментальными данными в связи с многофакторностью зависимости проскальзывания: от радиальной нагрузки, радиального зазора, частот вращения колец, «скольжения роторов», температуры не только наружного, но и внутреннего колец, температуры смазки, ее свойств, объема и способа подачи в подшипник и других факторов.

К сожалению, многие факторы сложно оценить в расчетах. Вместе с тем результаты экспериментов и теоретических расчетов позволяют сделать некоторые выводы о работоспособности межвальных подшипников.

Прежде всего установлено, что термин «проскальзывание» для межвальных подшипников является условным, так как частота вращения сепаратора оказывается не ниже, а выше теоретической (эпициклической). Это объясняется тем, что в межвальном подшипнике большинство роликов (даже в разгруженной зоне) являются «ведущими» так как прижимаются значительными по величине центробежными силами к вращающемуся на-

ружному кольцу. Теоретический анализ показывает, что вследствие этого скольжение роликов относительно наружного кольца минимально и близко к нулю. В то же время наблюдается значительное по величине скольжение роликов относительно внутреннего кольца. В этой связи в отличие от общепринятого выражения скольжение сепаратора межвального подшипника целесообразно определять отношением:

$$\varepsilon_0 = \omega_0/\omega_{00} - 1$$
.

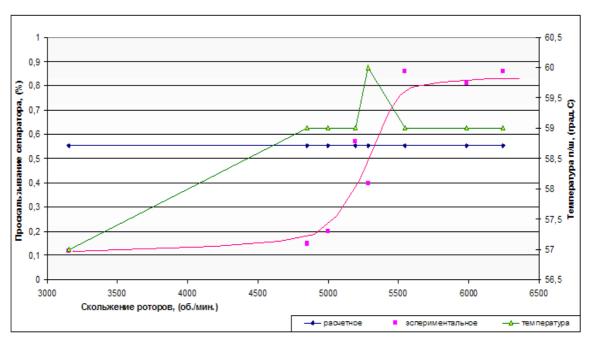


Рис.4. Зависимость проскальзывания сепаратора с комплектом роликов от разности частот вращения колец при радиальном зазоре 0,005 мм

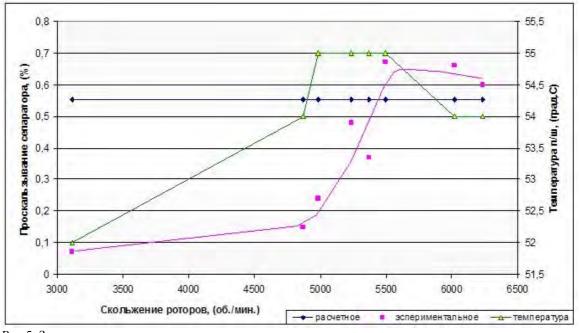


Рис.5. Зависимость проскальзывания сепаратора с комплектом роликов от разности частот вращения колец при радиальном зазоре 0,020 мм

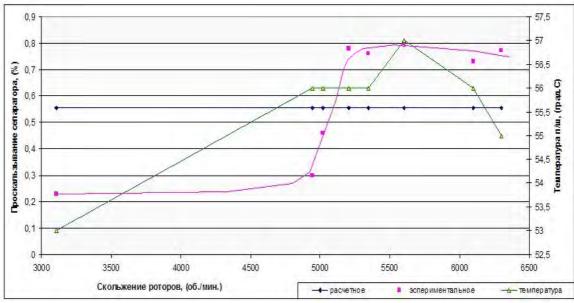


Рис. 6. Зависимость проскальзывания сепаратора с комплектом роликов от разности частот вращения колец при радиальном зазоре 0,034 мм

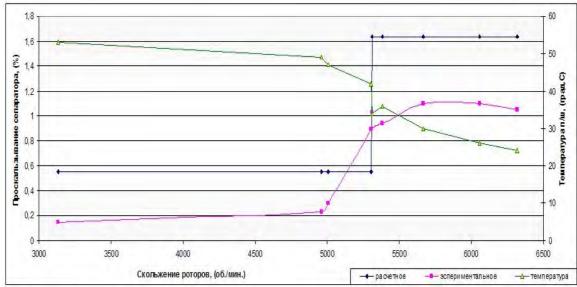


Рис. 7. Зависимость проскальзывания сепаратора с комплектом роликов от разности частот вращения колец при радиальном зазоре 0,043 мм

При условии $\omega_0 \le \omega_{_H}$ максимальная величина скольжения сепаратора определяется соотношением:

$$\varepsilon_0 \leq \frac{\left(\omega_{_{\mathit{H}}} - \omega_{_{\mathit{G}}}\right)\!\!\left(1 - D_{_{\mathit{W}}}/d_{_{\mathit{m}}}\right)}{2\omega_{_{00}}},$$

где $\omega_{_{\it H}}$ и $\omega_{_{\it g}}$ - частоты вращения колец; $D_{_{\it w}}$ - диаметр ролика; $d_{_{\it m}}$ - средний диаметр подшипника; $\omega_{_{\it 00}}$ — эпициклическая частота вращения сепаратора (определяется известными зависимостями).

Полученная зависимость подтверждает сделанный выше вывод о том, что скольже-

ние сепаратора межвального подшипника зависит от разности частот вращения колец.

Для подшипника 55-2672919Р5 при испытаниях на режиме, соответствующем режиму «малого газа» двигателя, скорости вращения колец были равны:

$$n_{_{\it B}} = 3060 \text{ MuH}^{-1}, \qquad n_{_{\it H}} = 9360 \text{ MuH}^{-1}.$$

Разность частот вращения $n_{_H}-n_{_\theta}=6300~{\rm мин}^{\text{-1}}.$ В этом случае предельное значение скольжения сепаратора будет равно 44,6%. В экспериментах при малом значении радиальной нагрузки ($F_{_r}=50~{\rm H}$), как показано на рис. 3, скольжение сепаратора состави-

ло от 21,9% до 37,7% в зависимости от радиального зазора.

На режиме «полного газа» при $n_{_{\! \it B}}=10200~{\rm мин}^{\! -1}$ и $n_{_{\! \it H}}=13300~{\rm мин}^{\! -1}$ («скольжение роторов» $3100~{\rm мин}^{\! -1}$) получим $\varepsilon_0 \le 12,0\%$. В испытания получено незначительное скольжение сепаратора от 0,04% до 0,20% в зависимости от радиального зазора и температуры масла.

Теоретический анализ показывает, что скорость скольжения ролика в контакте с беговой дорожкой внутреннего кольца может быть определена по формуле:

$$V_{se} = d_m(\omega_0 - \omega_{00}) + V_{sh}$$
.

Здесь V_{se} и V_{sh} - скорости скольжения ролика в контактах с внутренним и наружным кольцами соответственно.

При испытаниях подшипника 55-2672919Р5 на режиме «малого газа» имеем ω_{00} = 676,7 с⁻¹. Скольжение сепаратора достигало 37,7%. Принимая $V_{sh}\approx 0$, получим, что скорость скольжения роликов в контакте с внутренним кольцом достигала значения $V_{sh}\approx 28,7$ м/с.

Это говорит о высокой теплонапряженности в контактах роликов с внутренним кольцом и, как следствие, возможности значительного изнашивания и заедания.

Уменьшение скольжения сепаратора и изнашивания на внутреннем кольце может быть обеспечено не только подбором оптимальной величины радиального зазора, но и предварительным нагревом масла, подаваемого в подшипник.

Так при радиальном зазоре g = 0.022мм при температуре 27°C скольжение сепаратора составило 33,77%, при температуре 37°C – 21,92%, а при температуре 46°C – всего 2,85%.

Библиографический список

- 1. Кузнецов Н.Д. Обеспечение надежности современных авиадвигателей // Проблемы надежности и ресурса в машиностроении. М.: Наука, 1986. С.51-68.
- 2. Harris T.A. An analytical method to predict skidding in high speed roller bear-

- ings// ASLE Transactions. 1966. Vol. 9. № 3. P. 229 241.
- 3. Акифьев В.И. Совершенствование методики расчета роликовых подшипников опор ГТД с учетом проскальзывания: Дис. ... канд. техн. наук. Руководитель А.И. Данильченко. Самара, Самарск. гос. аэрокосм. ун-т, 1998. 165 с.
- 4. Исследование проскальзывания межвального подшипника 55 -2672919Р5 изделия 99В: Технический отчет / Руковод.: Г.М. Косинов, Н.И. Петров / ЦИАМ Москва, 2002. 18 с.
- 5. Балякин, В.Б. Теория и проектирование опор роторов авиационных ГТД / В.Б. Балякин, Е.П. Жильников, В.Н. Самсонов, В.В. Макарчук. Самара: Изд-во Самар. гос. аэрокосм. ун-та, 2007. 254 с.
- 6. Крагельский, И.В. Основы расчетов на трение и износ / И.В. Крагельский, М.Н. Добычин, В.С. Комбалов. М: Машиностроение, 1997. 526 с.

References

- 1. Kuznecov N.D. Safeguarding of reliability up-to date aviation engines // Problems of reliability and resource in mechanical engineering. M.: Science? 1986. P.51-68.
- 2. Harris T.A. An analytical method to predict skidding in high speed roller bearings// ASLE Transactions. 1966. Vol. 9. № 3. P. 229 241.
- 3. Akifiev V.I. Perfection method of calculation roller (shaft) bearings for gas-turbine engines subject to slip and jamming: Dissertation for academic degree candidate of technical science. Supervisor of studies Danilchenko A.I. Samara, Samara stat airspace university, 1998. 165p.
- 4. Investigation of skidding in bearing 55 2672919P5 between shafts of product 99V: Technical report/ Managers: G.M.Kosinov, N.I.Petrov/ CIAM Moscow, 2002. 18p.
- 5. Baliakin V.B., Zhilnikov E.P., Samsonov V.N., Makarchuk V.V., Theory and design of aviation gas-turbine engines rotor subjects. Samara: Publishing house SSAU, 2007. 254p.
- 6. Kragelsky I.V., Dobichin M.N., Kombalov V.S., Foundation of friction and wear calculations. M.: Machine building, 1997. 526p.

A SEPARATOR SKIDDING IN THE CYLINDRICAL ROLLER BEARING BETWEEN SHAFTS OF THE GAS TURBINE ENGINE

© 2009 V. V. Makarchuk¹, N. I. Petrov², V. I. Akifiev³

¹Air bearings factory

²Centre institute of aviation motor-building

³Samara state aerospace university

In article results of experimental researches and theoretical calculations of slippage of a separator in the cylindrical roller bearing between shafts of the gas turbine engine are presented.

Roller bearing, separator skidding, gas turbine engine

Информация об авторах

Макарчук Владимир Владимирович, генеральный директор завода авиационных подшипников, г. Самара. Тел.: (846) 338-72-30. E-mail: secretar@samzap.ru. Область научных интересов: конструкция и производство подшипников аэрокосмического применения.

Петров Николай Иванович, кандидат технических наук, начальник сектора исследований подшипников Центрального института авиационного моторостроения им. П.И. Баранова, г. Москва. Тел.: (495) 362-49-72. E-mail: petnic@ciam.ru. Область научных интересов: Конструкция и испытания подшипников ГТД.

Акифьев Владимир Иванович, кандидат технических наук, доцент кафедры эксплуатации авиационной техники Самарского государственного аэрокосмического университета. Тел.: (846) 267-46-14. E-mail: avijohn@mail.ru. Область научных интересов: математическое моделирование и программирование.

Makarchuk Vladimir Vladimirovich, General director of Air bearings factory, Samara. Phone: (846) 338-72-30. E-mail: secretar@samzap.ru. Area of research: Construction and production airspace bearings.

Petrov Nikolay Ivanovich, Candidate of technical sciences, Director of sector investigations bearings gas turbine engines of Centre institute of aviation motor-building, Moscow. Phone: (495) 362-49-72. E-mail: petnic@ciam.ru. Area of research: Construction and test bearings gas-turbine engines.

Akifiev Vladimir Ivanovich, Candidate of technical sciences, Docent of exploitation aircraft sub-faculty of Samara state aerospace university. Phone: (846) 267-46-14. E-mail: avijohn@mail.ru. Area of research: Mathematical modeling and programming.