СЛУЧАИ ИНТЕГРИРУЕМОСТИ, СООТВЕТСТВУЮЩИЕ ДВИЖЕНИЮ МАЯТНИКА В ТРЕХМЕРНОМ ПРОСТРАНСТВЕ

М. В. Шамолин

Аннотация


В работе систематизируются результаты по исследованию уравнений пространственного движения динамически симметричного закрепленного твердого тела-маятника, находящегося в некотором неконсервативном поле сил. Его вид заимствован из динамики реальных закрепленных твердых тел, помещенных в однородный поток набегающей среды. Параллельно рассматривается задача о пространственном движении свободного твердого тела, также находящегося в подобном поле сил. При этом на данное свободное тело действует также неконсервативная следящая сила, заставляющая во все время движения величину скорости некоторой характерной точки твердого тела оставаться постоянной во времени, что означает наличие в системе неинтегрируемой сервосвязи. Полученные результаты систематизируются и подаются в  инвариантном виде. Указаны нетривиальные механические и топологические аналогии.


Ключ. слова


твердое тело, сопротивляющаяся среда, динамическая система, трехмерный фазовый портрет, случай интегрируемости

Полный текст:

PDF

Список литературы

[1] Шамолин М.В. Случаи интегрируемости, соответствующие движению маятника на плоскости // Вестник СамГУ. Естественнонаучная серия. 2015. № 10(132). С. 91–113.
[2] Shamolin M.V. New integrable cases and families of portraits in the plane and spatial dynamics of a rigid body interacting with a medium // Journal of Mathematical Sciences. 2003. Vol. 114. № 1. P. 919–975.
[3] Шамолин М.В. Многообразие случаев интегрируемости в динамике маломерного и многомерного твердого тела в неконсервативном поле // Итоги науки и техники. Сер.: "Современная математика и ее приложения. Тематические обзоры". T. 125. "Динамические системы". 2013. C. 5–254.
[4] Походня Н.В., Шамолин М.В. Некоторые условия интегрируемости динамических систем в трансцендентных функциях // Вестник СамГУ. Естественнонаучная серия. 2013. № 9/1(110). С. 35–41.
[5] Шамолин М.В. Многообразие типов фазовых портретов в динамике твердого тела, взаимодействующего с сопротивляющейся средой // Доклады РАН, 1996. Т. 349. № 2. С. 193–197.
[6] Шамолин М.В. Динамические системы с переменной диссипацией: подходы, методы, приложения // Фунд. и прикл. мат. 2008. Т. 14. Вып. 3. С. 3–237.
[7] Арнольд В.И., Козлов В.В., Нейштадт А.И. Математические аспекты классической и небесной механики. М.: ВИНИТИ, 1985. 304 с.
[8] Трофимов В.В. Симплектические структуры на группах автоморфизмов симметрических пространств // Вестн. Моск. ун–та. Сер. 1. Математика. Механика. 1984. № 6. C. 31–33.
[9] Трофимов В.В., Шамолин М.В. Геометрические и динамические инварианты интегрируемых гамильтоновых и диссипативных систем // Фунд. и прикл. мат. 2010. Т. 16. Вып. 4. С. 3–229.
[10] Шамолин М.В. Методы анализа динамических систем с переменной диссипацией в динамике твердого тела. М.: Изд-во “Экзамен”, 2007. 352 с.
[11] Shamolin M.V. Classes of variable dissipation systems with nonzero mean in the dynamics of a rigid body // Journal of Mathematical Sciences. 2004. Vol. 122. № 1. P. 2841–2915.
[12] Шамолин М.В. Некоторые модельные задачи динамики твердого тела при взаимодействии его со средой // Прикл. механика. 2007. Т. 43. № 10. С. 49–67.
[13] Шамолин М.В. Новые интегрируемые случаи в динамике тела, взаимодействующего со средой, при учете зависимости момента силы сопротивления от угловой скорости // Прикл. мат. и мех. 2008. Т. 72. Bып. 2. С. 273–287.
[14] Шамолин М.В. Об интегрируемости в элементарных функциях некоторых классов динамических систем // Вестн. Моск. ун-та. Сер. 1. Математика. Механика. 2008. № 3. С. 43–49.
[15] Шамолин М.В. Об устойчивости прямолинейного поступательного движения //Прикл. механика. 2009. Т. 45. № 6. С. 125–140.

Ссылки

  • Ссылки не определены.