ВЕКТОРНОЕ ПРЕОБРАЗОВАНИЕ ФУРЬЕ С РАЗРЫВНЫМИ КОЭФФИЦИЕНТАМИ И ЕГО ПРИМЕНЕНИЕ В ТЕОРИИ УПРУГОСТИ

А.А. Малышев, О.Э. Яремко

Аннотация


В работе описан метод векторного преобразования Фурье с разрывными коэффициентами. Техника применения указанного метода к решению задач математической физики в случае неоднородных сред подробно проиллюстрирована на примере динамической задачи теории упругости.

Полный текст:

PDF

Список литературы

Гринченко В.Т., Улитко А.Ф., Шульга Н.А. Динамика связных полей в элементах конструкций. Электроупругость. Киев: Наукова думка, 1989. 279 с.
Уфлянд Я.С. Интегральные преобразования в задачах теории упругости. Л.: Наука, 1967. 402 с.
Уфлянд Я.С. О некоторых новых интегральных преобразованиях и их приложениях к задачам математической физики // Вопросы математической физики. Л., 1976. С. 93-106.
Найда Л.С. Гибридные интегральные преобразования типа Ханкеля-Лежанд-ра // Мат. методы анализа динам. систем. 1984. T. 8. С. 132-135.
Проценко В.С., Соловьев А.И. Некоторые гибридные интегральные преобразования и их приложения в теории упругости неоднородных сред // Прикладная механика. 1982. T. 13. № 1. C. 62-67.
Проценко B.C., Головченко А.В. Обобщенное интегральное преобразование типа Фурье-Лежандра // Мат. методы анализа. Харьков, 1982. № 6. С. 26-28.
Ленюк М.П. Гибридные интегральные преобразования (Бесселя, Лежандра, Бесселя) // Укр. матем. журнал. 1991. Т. 43. Вып. 6. С. 770-779.
Ленюк М.П. Гибридные интегральные преобразования (Бесселя, Фурье, Бесселя) // Матем. физика и нелинейная механика. 1989. Вып. 12(46). С. 68-74.
Ленюк М.П. Интегральное преобразование Фурье на кусочно-однородной полупрямой // Изв. вузов. Сер. Математика. 1989. T. 4. С. 14-18.
Яремко О.Э. Матричные интегральные преобразования Фурье для задач с разрывными коэффициентами и операторы преобразования // Доклады РАН. 2007. T. 417. № 3. С. 323-325
Баврин И.И., Матросов В.Л., Яремко О.Э. Операторы преобразования в анализе, математической физике и теории распознавания образов. М.: Прометей, 2006. 292 с.
Судаков Р.С. Простые методы прикладной теории матриц. М.: РХД, 2005. 450 с.
Брейсуэлл Р. Преобразование Хартли. M.: Мир, 1990. 584 с.
Снеддон И. Преобразование Фурье. М.: Иностр. лит., 1955, 668 с.
Ландау Л.Д., Лифшиц Е.М. Теоретическая физика: Теория упругости. М.: Наука, 1987. T. 7. 247 с.
Тихонов А.Н., Самарский А.А. Уравнения математической физики. 7-е изд. М.: Наука, 2004. 743 с.
Ахтямов А.М., Садовничий В.А., Султанаев Я.Т. Обратные задачи Штурма-Лиувилля с нераспадающимися краевыми условиями. М.: Изд-во Московского университета, 2009.
Оболашвили Е.И. Преобразования Фурье и его применение в теории упругости. Тбилиси: Мецниереба, 1979. 230 с.
Снеддон И.Н., Бери Д.С. Классическая теория упругости. М.: Вузовская книга, 2008. 215 с.

Ссылки

  • Ссылки не определены.