Vibrations of soil and foundation due to railway, blast and impact loading

Cover Page

Cite item

Full Text

Abstract

The vibrations of soil and foundations are demonstrated for different types of loading. Train-induced ground vibrations are studied in a measurement cam­paign where a test train has run with regularly varied speeds. The measured train-induced soil vibration at 2 to 100 m distance from the track is compared with the wave propagation due to hammer excitation and with the theoretical wave field. The strong influence of the soil and the train speed on the amplitudes and frequencies of the vibration has been analysed for passages of the locomotive and the carriages. - The generation of ground vibration by strong explosions has been studied on a large testing area with sandy soil. The propagating waves were measured in a regular grid of measuring points in 10 to 1000 m. Therefore, the dominance of certain waves at certain distances and the changes of compressio­nal waves and Rayleigh waves could clearly be observed. The results are compa­red with impulse hammer measurements in the range of 5 to 50 m. - A drop test facility has been built on the testing area of the Federal Institute of Materials Research and Testing (BAM). Heavy masses (containers) of up to 200 t can be dropped from 10 m height on a big reinforced concrete foundation. The founda­tion was instrumented by accelerometers, strain gauges and pressure cells to give information about the loading condition and by geophones to measure the vibra­tion of the surrounding soil and building. Both excitation processes, the release of the mass and the impact, produce high vibration amplitudes. On a smaller drop foundation, the influence of the drop height and the target stiffness has been studied more systematically.

About the authors

Lutz Auersch

BAM Federal Institute of Material Research and Testing

Author for correspondence.
Email: lutz.auersch-saworski@bam.de
Germany

References

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Journal of Dynamics and Vibroacoustics

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Свидетельство о регистрации СМИ, 16+

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies