Compact optical tweezer with the capability of dynamic control


Cite item

Full Text

Abstract

The extension of capabilities towards the formation of controlled complex-shaped optical traps is demonstrated for the compact laser tweezer based on the four-channel LC modulator. The experimental results on the yeast cell manipulation, including the particles larger than 10 μm, are presented. The capture and confinement of the object with the dimensions 37 μm × 13 μm was realized by means of the use of the ellipse-shaped trap. The maximal escape velocity of this object was about 20 μm/s.

About the authors

Alexander Korobtsov

Email: korobtsov82@gmail.com
Russian Federation

Svetlana Kotova

Email: kotova@fian.smr.ru
Russian Federation

Nikolay Losevsky

Email: losevsky@fian.smr.ru
Russian Federation

Aleksandra Mayorova

Author for correspondence.
Email: mayorovaal@gmail.com
Russian Federation

Sergey Samagin

Email: samagin@fian.smr.ru
Russian Federation

References

  1. T.C. Bakker Schut, E.F. Schipper, B.G. de Grooth and J. Greve “Optical-trapping micromanipulation using 780-nm diode lasers” Optics Letters, 18 (6), 447-449, 1993.
  2. R. Afzal and E. Treacy “Optical tweezers using a diode laser” Rev. Sci. Instrum., 63 ( 4), 2157-2163, 1992.
  3. S. Smith, S. Bhalotra, A. Brody, B. Brown, E. Boyda, and M. Prentiss “Inexpensive optical tweezers for undergraduate laboratories”, Am. J. Phys., 67 (1), 26-35, 1999.
  4. A. Ashkin J. M. Dziedzic and T. Yamane “Optical trapping and manipulation of single cells using infrared laser beams”, Nature, 330, 769-771, 1987.
  5. J. Bechhoefer and S. Wilson “Faster, cheaper, safer optical tweezers for the undergraduate laboratory” Am. J. Phys., 70 (4), 393-400, 2002.
  6. M. Šery, Z. Lošt’ak, M. Kalman, P. Jakl, P. Zemanek “Compact laser tweezers”, Proc. of SPIE, 6609, 66090N, 2007.
  7. Yu. Ogura, K. Kagawa, and J. Tanida “Optical manipulation of microscopic objects by means of vertical-cavity surface-emitting laser array sources”, Applied Optics, 40 (30), 5430-5435, 2001.
  8. T. Suzuki, T. Maeda, O. Sasaki, S. Choi “Enhancement of optical gradient force employed in optical tweezers using a pulsed laser diode”, Conference Paper Optical Trapping Applications (Monterey, California, United States, April 4-6, 2011), OTMD4p.pdf, 2011.
  9. T. Piñón, L. Hirst, J. Sharping “Fiber-Based Dual-Beam Optical Trapping System for Studying Lipid Vesicle Mechanics” in Optics in the Life Sciences, OSA Technical Digest (CD) (Optical Society of America, 2011), OTTuB2.pdf http://dx.doi.org/10.1364/OTA.2011.OTTuB2.
  10. K. Taguchi, J. Okada, Y. Nomura and K. Tamura “Three-Dimensional Optical Trapping for Cell Isolation Using Tapered Fiber Probe by Dynamic Chemical Etching”, Journal of Physics: Conference Series 352, 012039 (doi: 10.1088/1742-6596/352/1/012039), 2012.
  11. K. Taguchi, S. Hirota, H. Nakayama, D. Kunugihara and Y. Mihara “Optical Manipulation of Symbiotic Chlorella in Paramecium Bursaria Using a Fiber Axicon Microlens” Journal of Physics: Conference Series 352, 012040, (doi: 10.1088/1742-6596/352/1/012040), 2012.
  12. K. Taguchi, H. Ueno, T. Hiramatsu and M. Ikeda “Optical trapping of dielectric particle and biological cell using optical fiber”, Electron Lett., 33, 413-414, 1997.
  13. K. Taguchi and N. Watanabe “Single-beam optical fiber trap”, Journal of Physics: Conference Series, 61, 1137–1141, 2007.
  14. Ch. Xie, M.A. Dinno, Y.-Q. Li “Near-infrared Raman spectroscopy of single optically trapped biological cells”, Optics Letters, 27 (4), 249-251, 2002.
  15. R.W. Applegate Jr., J. Squier, T. Vestad, J. Oakey, and D.W.M. Marr “Optical trapping, manipulation, and sorting of cells and colloids in microfluidic systems with diode laser bars”, Optics Express, 12 (19), 4390-4398, 2004.
  16. R.W. Applegate, J. Squier, T. Vestad, J. Oakey, and D.W.M. Marr “Fiber-focused diode bar optical trapping for microfluidic flow manipulation”, Applied Physics Letters, 92, 013904, 2008.
  17. R.W. Applegate, Jr., J. Squier, T. Vestad, J. Oakey, D.W.M. Marr, P. Bado, M.A. Dugan, and A.A. Said “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping” Lab Chip. 6(3), 422-426, 2006.
  18. R. Applegate Jr., D. Marr, J. Squier, and S. Graves “Particle size limits when using optical trapping and deflection of particles for sorting using diode laser bars”, Optics Express, 17 (19) 16731, 2009.
  19. S. Cran-McGreehin, T. Krauss and K. Dholakia “Integrated monolithic optical manipulation”, Lab Chip, 6, 1122–1124, 2006.
  20. F.C. Cheong, C.H. Sow, A.T.S.Wee, P. Shao, A.A. Bettiol, J.A. van Kan and F. Watt “Optical travelator: transport and dynamic sorting of colloidal microspheres with an asymmetrical line optical tweezers” Appl. Phys. B 83, 121–125, 2006.
  21. A.A. Ambardekar, Y.-Q. Li “Optical levitation and manipulation of stuck particles with pulsed optical tweezers”, Optics Letters, 30 (14), 1797-1799, 2005.
  22. I. Sraj, D.W.M. Marr, and Ch.D. Eggleton “Linear diode laser bar optical stretchers for cell deformation”, Biomedical Optics Express 1 (2), 483-488, 2010.
  23. I. Sraj, J. Chichester, E. Hoover, R. Jimenez, J. Squier, C.D. Eggleton, and D.W.M. Marr “Cell deformation cytometry using diode-bar optical stretchers”, J. Biomed. Opt., 15 (4), 047010-1, 2010.
  24. Ch. Xie, Ch. Goodman, M.A. Dinno, and Y.-Q. Li “Real-time Raman spectroscopy of optically trapped living cells and organelles” Optics Express, 12 (25), 6208-6214, 2004.
  25. W. Cheng, X. Hou, and F. Ye “Use of tapered amplifier diode laser for biological-friendly high-resolution optical trapping”, Optics Letters, 35 (17), 2988-2990, 2010.
  26. H. Schneckenburger, A. Hendinger, R. Sailer, MH Gschwend , WS Strauss, M Bauer, K. Schütze “Cell viability in optical tweezers: high power red laser diode versus Nd:YAG laser”, J Biomed Opt., 5(1), 40-44, 2000.
  27. T. Suzuki, T. Maeda, O. Sasaki, S. Choi “Enhancement of optical gradient force employed in optical tweezers using a pulsed laser diode” Conference Paper Optical Trapping Applications (Monterey, California United States April 4-6, 2011), 2011
  28. Y.F. Chen, Y.P. Lan “Spontaneous pattern formation in a microchip laser excited by a doughnut pump profile”, Appl. Phys. B., 75, 453-456, 2002.
  29. Y.F. Chen, Y.P. Lan “Transverse pattern formation of optical vortices in a microchip laser with a large Fresnel number”, Physical Review A, 65, 013802, 2001.
  30. P. Genevet, S. Barland, M. Giudici, J.R. Tredicce “Bistable and Addressable Localized Vortices in Semiconductor Lasers”, Physical Review Letters, 104, 223902, 2010.
  31. V. Voignier, J. Houlihan, J. R. O’Callaghan, C. Sailliot, and G. Huyet “Stabilization of self-focusing instability in wide-aperture semiconductor lasers”, Phys. Rev. A 65, 053807 2002.
  32. J. Mukherjee; J G. McInerney “Lateral mode dynamics in high-power wide-aperture quantum dot laser” //Proc. SPIE 6468, Physics and Simulation of Optoelectronic Devices XV, 64681A (March 22, 2007); doi: 10.1117/12.700691, 2007.
  33. A.A. Krents, D.A. Anchikov “The vortex lattices in large-aperture lasers”, Izvestiya of Samara scientific center of the Russian Academy of Sciences, 14 (4), 201-205, 2012 (in Russian).
  34. D.A. Anchikov, A.A. Krents, А.V. Pahomov “Stability of transvers optical patterns in wide-aperture”, Izvestiya of Samara scientific center of the Russian Academy of Sciences, 15 (4), 99-103, 2013 (in Russian).
  35. R. Skidanov, M. Rykov, G. Iannacchione and S. Krivoshlykov “The modification of laser beam for optimization of optical trap force characteristic”, Computer optics, 36 (3), 377-386, 2012 .
  36. S. Fore, J. Chan, D. Taylor and T. Huser “Raman spectroscopy of individual monocytes reveals that single-beam optical trapping of mononuclear cells occurs by their nucleus”, J. Opt., 13, 044021, 2011.
  37. S. Kotova, V. Patlan and S. Samagin “Tunable liquid crystal focusing device: I. Theory”, Quantum Electron. 41, 58–64, 2011.
  38. S. Kotova, V. Patlan and S. Samagin “Tunable liquid crystal focusing device: II. Experiment”, Quantum Electron., 41, 65–70, 2011.
  39. S. Kotova, V. Patlan and S. Samagin “Focusing light into a line segment of arbitrary orientation using a four channel liquid crystal light modulator”, J. Opt., 15, 035706, 2013.
  40. A. Korobtsov, S. Kotova, N. Losevsky, A. Mayorova, V. Patlan and S. Samagin “Optical trap formation with a four-channel liquid crystal light modulator”, J. Opt., 16, 035704, 2014.
  41. A. Korobtsov, S. Kotova, N. Losevsky, A. Mayorova, and S. Samagin “Formation of contour optical traps with a four-channel liquid crystal focusator”, Quantum Electron. 44, 1157–1164, 2014.
  42. S. Kotova, A. Mayorova and S. Samagin “Tunable 4-channel LC focusing device: summarized results and additional functional capabilities”, J. Opt., 17, 055602, 2015.
  43. A. Korobtsov, S. Kotova, N. Losevsky, A. Mayorova, S. Samagin and V. Volostnikov “Capture of microscopic objects by contour optical traps formed by 4-channel liquid crystal modulator”, Journal of Physics: Conference Series, 605, 012007, 2015.
  44. R.V. Skidanov, A.A. Morozov, A.P. Porfirev “Composite light beam and mixroexplosion for optical micromanipulation” Computer optics, 36 (3), 371-376, 2012 .

Supplementary files

Supplementary Files
Action
1. JATS XML

© 2014-2016 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies